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Quality is in the Eye of the Beholder:
Taste Projection in Markets with Observational Learning

Tristan Gagnon-Bartsch and Antonio Rosato

This Online Appendix is organized as follows. Section B considers the key effects of projection
under richer signal structures. Section C considers additional results from the dynamic model with
an arbitrary number of periods, including results on optimal monopoly pricing.

B Alternative Signal Structures

In this section, we show that our key comparative statics from the main model emerge in settings
with richer heterogeneity in private information. We also note a few additional implications that
emerge in these settings.

B.1 Fully-Heterogeneous Private Signals

We first consider the case in which each agent receives a conditionally independent private signal
correlated with ω. We show that a projector’s inferred quality upon observing the aggregate quantity
demanded by these privately informed agents is still: (i) negatively related to her taste; and (ii)
positively related to the price that predecessors paid. We will show this in a two-period model
similar to Section 4.

As in the main text, suppose that individuals share a common prior over ω with support R.
In each generation n = 1, 2, individual i observes the realization of a private signal Si,n that is
correlated with ω. We assume that, conditional on ω, signals are i.i.d. across all individuals in both
periods, and that no signal realization perfectly reveals ω. Let Zi,n ≡ E[ω|Si,n] denote a consumer’s
“private belief”—their expected quality conditional on their signal and the prior. We work directly
with the distribution of Zi,n conditional on ω rather than conditional distributions over signals. As
such, let Z(ω) denote the random variable representing individuals’ private beliefs conditional on ω.
We assume that Z(ω) can be expressed as Z(ω) = m(ω) + Y for some strictly increasing function
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m and a random variable Y that is independent of ω (and T ) and has a log-concave density.1 This
implies that consumers’ interim valuations for the good in period 1 are distributed according to
V (ω) ≡ m(ω) + Y + T . Let H(·;ω) denote the CDF of V (ω). In period 1, individuals act on their
private signals alone. Thus, the demand function in period 1 is D1(p;ω) ≡ 1−H(p1;ω).

Fixing the true quality ω, we are interested in the quality inferred by consumers in period 2 upon
observing d1 = D(p1;ω) and price p1. Let ω̂(t; p1) denote the quality inferred by a consumer with
taste t.

Proposition B.1 (Comparative Statics in the Heterogeneous-Signal Model). Consider the signal

structure of Section B.1. Fix ω, and consider any p1 such that demand in period 1 is interior (i.e.,

d1 ∈ (0, 1)). For any α > 0, the inferred quality of a projector with type t who observes d1 is: (i)

decreasing in t (ii) increasing in p1.

The proof, presented below, follows a similar logic to the graphical argument in Figure 1. Since
a projector thinks interim valuations are less dispersed than they truly are, her perceived demand
curve intersects the true demand curve at a point where the perceived demand curve has a greater
price elasticity. Thus, to explain a market outcome at a higher price, the projector must consider
a demand curve that is shifted outward relative to the initial perceived demand. This outward shift
corresponds to a higher perceived quality. The key difference between this case and the one con-
sidered in the main text is that the observed quantity demanded now results from both variation in
consumers’ tastes and variation in their signals. We therefore make use of results on the “dispersion
ordering” of convolutions of log-concave random variables to prove that, even when consumers’
have disperse private information, the perceived and true demand curves continue to obey a single-
crossing property crucial to the logic depicted in Figure 1.

Proof of Proposition B.1. Fix ω, and consider any p1 such that the quantity demanded in period 1
is interior (i.e., d1 ∈ (0, 1)). We examine how ω̂(t; p1) varies in t and p1. Note that ω̂(t; p1) is the
value of ω̂ that solves D̂1(p1; ω̂|t) = D1(p1;ω), where D̂1(p1; ω̂|t) is type t’s misperceived demand
function: D̂1(p1; ω̂|t) = 1 − Ĥ(p; ω̂|t), and Ĥ(·; ω̂|t) is the CDF of V̂ (ω̂|t) ≡ m(ω̂) + Y + T̂ (t).
Hence ω̂(t; p1) is the value of ω̂ that solves L(ω̂; t, p1) ≡ D̂1(p1; ω̂|t)−D1(p1;ω) = 0.

Part 1: The Effect of t on Perceived Quality. By the Implicit Function Theorem (IFT):

∂ω̂(t; p1)

∂t
= −∂L(ω̂; t, p1)

∂t

(
∂L(ω̂; t, p1)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(t;p1)

. (B.1)

Notice that, for any p1 that generates interior demand and any t, ∂
∂ω̂
L(ω̂; t, p1) = ∂

∂ω̂
D̂1(p1; ω̂|t) >

0 given our mild assumption that demand is increasing in quality (i.e., m is a strictly increasing

1 This structure nests the familiar Gaussian structure noted in the main text, but is also more general.
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function). Thus

sgn
(
∂ω̂(t; p1)

∂t

)
= sgn

(
−∂L(ω̂; t, p1)

∂t

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (B.2)

Note that
− ∂L(ω̂; t, p1)

∂t
= − ∂

∂t
D̂1(p1; ω̂|t) < 0. (B.3)

This follows from the fact that t′ > t implies that V̂ (ω̂|t′) first-order stochastically dominates V̂ (ω̂|t)
since in this case T̂ (t′) first-order stochastically dominates T̂ (t); accordingly, Ĥ(p; ω̂|t) is decreas-
ing in t and thus D̂1(p; ω̂|t) is increasing in t.

Part 2: The Effect of p on Perceived Quality. Invoking the IFT again, the discussion following
(B.1) implies that

sgn
(
∂ω̂(t; p)

∂p

)
= sgn

(
−∂L(ω̂; p)

∂p

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (B.4)

Note that
− ∂L(ω̂; p)

∂p
=

∂

∂p
D1(p;ω)− ∂

∂p
D̂1(p; ω̂|t). (B.5)

With downward-sloping demand functions, the previous expression is positive when evaluated at
ω̂(t; p1) if and only if ∣∣∣∣ ∂∂pD1(p1;ω)

∣∣∣∣ < ∣∣∣∣ ∂∂pD̂1(p1; ω̂(t; p1)|t)
∣∣∣∣ ; (B.6)

that is, if and only if the perceived demand function is locally more price sensitive at the original
market outcome than the true demand function.

Since ω̂(t; p1) is a state in which type t’s perceived demand curve intersects the true demand
curve at the observed market outcome (d1, p1) (i.e., D̂1(p1; ω̂(t; p)|t) = d1 = D1(p1;ω)), a sufficient
condition for Condition (B.6) is that for any arbitrary ω̂, D̂1(·; ω̂|t) crossesD1(·;ω) at most once and
does so from above. That is, there exists at most one price p∗ such that D̂1(p∗; ω̂|t) = D1(p∗;ω), and
p∗ is such that D̂1(p; ω̂|t) < D1(p;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω) for all p < p∗. (Note
that the demand curves in Figure 1 are drawn, as usual, with p on the y-axis; from that perspective,
the previous condition implies that the perceived demand curve crosses the true one from below.)

To complete the proof, we prove the sufficient condition above: for any arbitrary ω̂ and t, there
exists at most one price p∗ such that D̂1(p∗; ω̂|t) = D1(p∗;ω), and p∗ is such that D̂1(p; ω̂|t) <
D1(p;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω) for all p < p∗. Given thatD1(p;ω) = 1−H(p; ω̂)

and D̂1(p; ω̂|t) = 1− Ĥ(p; ω̂|t), it suffices to show that Ĥ(p|ω̂; t) crosses H(p|ω) at most once and
does so from below (i.e., there exists at most one price p∗ such that Ĥ(p|ω̂; t) < H(p;ω) if p < p∗

and Ĥ(p|ω̂; t) > H(p;ω) if p > p∗).
We prove this using the concept of dispersive order defined by Shaked (1982) and Shaked and

Shanthikumar (2007). For any two arbitrary random variables X and Y with CDFs FX and FY , we
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say that X is less dispersed than Y , denoted X ≤disp Y , if F−1
X (b) − F−1

X (a) ≤ F−1
Y (b) − F−1

Y (a)

whenever 0 ≤ a ≤ b ≤ 1. By Theorem 2.1 of Shaked (1982), X ≤disp Y iff FX crosses FY at most
once and does so from below. Thus, it suffices to show that V̂ (ω̂; t) ≤disp V (ω), which is equivalent
to T̂ (t) + Z(ω̂) ≤disp T + Z(ω). Since Z(ω) = m(ω) + Y , the previous condition is equivalent
to T̂ (t) + m(ω̂) + Y ≤disp T + m(ω) + Y , where m(ω̂) and m(ω) are constants given that we are
conditioning on ω and ω̂. As noted in Comment 3.B.2 of Shaked and Shanthikumar (2007), the order
≤disp is location invariant, meaning that T̂ (t) +m(ω̂) + Y ≤disp T +m(ω) + Y ⇔ T̂ (t) + Y ≤disp
T + Y . Since Y has a log-concave density and is independent of T and T̂ (t), Theorem 3.B.8 of
Shaked and Shanthikumar (2007) implies that T̂ (t) + Y ≤disp T + Y if T̂ (t) ≤disp T . Thus, to
complete the proof it suffices to show that T̂ (t) ≤disp T . Again by Theorem 2.1 in Shaked (1982),
this holds so long as F̂ (·|t) crosses F only once and does so from below. This is true by Part 4 of
Observation 1, completing the proof. �

B.2 Heterogeneous Signals Across Periods

In this section, we consider a structure in which each generation of consumers observes a distinct
signal. All consumers in each Generation n observe the same signal realization, which we denote
by sn. We assume that sn is i.i.d. for all n. Furthermore, sn is “quasi-public”: it is observed by
all agents within Generation n, but not by agents in any other generation.2 As in the main text
(and the previous appendix section), we again show that the perceived quality of each agent in each
Generation n ≥ 2 is: (i) negatively related to their taste; and (ii) positively related to the price that
predecessors paid.

Setup. Agents in Generation n attempt to infer the posterior beliefs of agents in period n − 1

from their quantity demanded. If agents are rational, then all agents in each generation hold a
common expectation over ω. Let ω̃n−1 denote this rational expectation among Generation n− 1 for
n ≥ 2. Agents in Generation n can then perfectly extract ω̃n−1 from the observed market coverage
in Generation n− 1 (assuming this value is interior).

To make matters concrete, we consider the familiar Gaussian information structure: ω ∼ N(ω̄0, ρ
2),

and sn ∼ N(ω, η2). Rational updating then takes the form

ω̃n = γnsn + (1− γn)ω̃n−1, where γn =
1

n+ η2/ρ2
. (B.7)

As the updating process in B.7 suggests, a rational Generation n will combine their own signal, sn,
with the inferred posterior belief of Generation n− 1, ω̃n−1, to reach their posterior estimate of ω.

With projection, an agent in Generation n thinks he can perfectly extract the posterior expectation

2If generations consisted of a single agent, this structure would resemble the canonical sequential herding model
(e.g., Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000).
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of ω held by the previous generation, but does so incorrectly. As usual, his incorrect inference will
depend on his taste, t. Denote this (mis)extracted value of ω̃n−1 by ω̂n−1(t). The projector will then
use B.7 to form a posterior estimate of γnsn + (1− γn)ω̂n−1(t). Below, we analyze how projectors’
beliefs evolve within this structure.

We first consider how beliefs evolve within the first few periods. For simplicity, we normalize
ω̄0 = 0. Since Generation 1 does not observe others, their is no scope for mislearning in period 1.
Hence, agents in Generation 1 share a common (rational) estimate of ω equal to ω̃1 = γ1s1. Thus,
an agent buys iff ω̃1 + ti ≥ p1 ⇔ ti ≥ p1 − ω̃1, and hence demand in period 1 is

D1(p1; ω̃1) = 1− F (p1 − ω̃1). (B.8)

Distorted Beliefs in Generation 2. An agent in Generation 2 with taste t thinks that, conditional
on Generation 1 holding a posterior expectation of ω̂, their demand is given by

D̂1(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F
(
p1 − ω̂ − αt

1− α

)
. (B.9)

This agent wrongly infers that the posterior expectation in Generation 1 is the value of ω̂ that solves
D(p1; ω̃1) = D̂(p1, ω̂|t), which we denote by ω̂1(t). Hence,

ω̂1(t) = (1− α)ω̃1 + α(p1 − t). (B.10)

This misperception is identical to the one formed by agents in Generation 2 of the baseline model in
the main text (see Equation 10). Furthermore, given that ω̃1 = γ1s1, the preceding equation implies
that an agent with taste t misinfers the signal to be

ŝ1(t) = (1− α)s1 +
1

γ1

α(p1 − t). (B.11)

An immediate implication of (B.10) and (B.11) is that, under projection, an observer underweights
the true information of the previous generation. Moreover, they wrongly put weight on irrelevant
factors (i.e., the price and their own taste), and this erroneous weight is larger when signals are less
precise relative to the prior (i.e., when γ1 is smaller). There is a straightforward intuition for this.
A projector will, on average, observe a level of demand that deviates from their initial expectations
since they incorrectly predict demand conditional on the signal. They attribute this deviation to the
value of s1. Thus, when a projector anticipates that the signal will have little effect on predecessors’
beliefs (i.e,. γ1 is small), they require a more extreme value of s1 to rationalize the deviation between
the observed demand and their biased predictions.

Now consider demand in Generation 2. An agent with taste t forms an expectation of ω based on
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s2 and ω̂1(t) equal to E[ω|s2, ω̂1(t)] = γ2s2 + (1− γ2)ω̂1(t). Using the expression for ω̂1(t) above,
the expected valuation of an agent in Generation 2 with taste t is

E[u(ω, t)|s2, ω̂1(t)] = γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
+

(
1− α(1− γ2)

)
t. (B.12)

Let v̂2(t) denote the expected valuation in (B.12). Similar to the approach in the main text, we can
write this perceived valuation in terms of a taste-independent component, denoted by ω̄2, where

ω̄2 ≡ γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
. (B.13)

In the rational model (i.e., α = 0), ω̄2 reduces to ω̃2—the rational expectation of ω given (s1, s2).
Given (B.13), we can write perceived valuations in Generation 2 as v̂2(t) = ω̄2 + β2t, where β2 ≡
1− α(1− γ2).

The Evolution of Beliefs. In fact, the perceived valuations of consumers in all Generations n ≥ 2

can be expressed as v̂n(t) = ω̄n + βnt where ω̄n is independent of tastes. Thus, the dynamics of the
model are described by the evolution of the sequences of (ω̄n) and (βn).

To verify for this claim, suppose that, as in Generation 2, the perceived valuations of agents in
any Generation n > 2 are given by v̂n(t) = ω̄n + βnt. The demand in period n ≥ 2 is then

Dn(pn; ω̄n) ≡ 1− F
(

1

βn
(pn − ω̄n)

)
. (B.14)

A projecting agent in Generation n+1 with taste t thinks that agents in Generation n share a common
expectation of ω, denoted ω̂, and thus have a demand given by

D̂n(pn; ω̂|t) = 1− F̂ (pn − ω̂|t) = 1− F
(
pn − ω̂ − αt

1− α

)
. (B.15)

The agent thus infers that the posterior expectation of Generation n is the value of ω̂ that equates
(B.14) and (B.15), yielding

ω̂n(t) =

(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn − αt. (B.16)

Thus, the updated expectation of ω for an agent with taste t in Generation n+ 1 is

E[ω|sn+1, ω̂n(t)] = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn − αt

]
. (B.17)
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This agent’s total perceived valuation is v̂n+1(t) = E[ω|sn+1, ω̂n(t)] + t; hence,

v̂n+1(t) = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn

]
︸ ︷︷ ︸

≡ω̄n+1

+

(
1− α(1− γn+1)

)
︸ ︷︷ ︸

≡βn+1

t.

This reveals how (βn) and (ω̄n) evolve:

βn+1 = 1− α(1− γn+1), (B.18)

ω̄n+1 = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn

]
. (B.19)

Thus, for all n ≥ 2, the perceived valuations of consumers in period n are given by v̂n(t) =

ω̄n + βnt, where βn and ω̄n follow the processes in (B.18) and (B.19), respectively, starting from
the initial conditions of β1 = 1 and ω̄1 = ω̃1 = γ1s1. Furthermore, the quantity demanded in each
period n is given by dn = Dn(pn; ω̄n) as in (B.14).3

There are a few features of this process worth noting. First, since γn is monotonically decreasing
in n with limn→∞ γn = 0, it follows that βn monotonically decreases from 1 and converges to 1−α.
Thus, in every period, a consumer’s perceived valuation puts too little (yet positive) weight on his
own taste. In the limit, this diminished weight is equal to 1 − α. This is identical to our results in
both the static and dynamic cases of our model in the main text. See, for instance, the discussion
preceding Proposition 2.

Additionally, since βn ∈ (1 − α, 1) for all n, the term (1 − α)/βn that appears in the transition
equation for (ω̄n) must take a value in (0, 1). Thus, the term in square brackets in Equation (B.19)
is a convex combination of ω̄n and pn, implying that the aggregate biased belief in each period n is
strictly increasing in the price faced by the previous generation. Furthermore, the weight on ω̄n (i.e.,
(1− α)/βn) converges to 1 as n→∞, and thus the effect of the preceding price on current beliefs
diminishes over time.

Finally, we can use Equation (B.19) to write the beliefs of the current generation in terms of
the entire history of signals and prices. Toward that end, let λn ≡ (1 − α)/βn ∈ (0, 1). For all
k = 1, 2, . . . and all n ≥ k + 2, define ank =

∏n−1
j=k+1 λj . We then have:

ω̄n = γnsn + (1− α)γn

(
1

βn−1

sn−1 +
n−2∑
k=1

ank
βk
sk

)

+ αγn

(
1

βn−1

pn−1 +
n−2∑
k=2

ank
βk
pk +

an1
γ1

p1

)
. (B.20)

3 Note that the transition equations in (B.18) and (B.19) characterize the process in the case where the quantity
demanded in each period prior to n+ 1 is interior (i.e., dk ∈ (0, 1) for k ≤ n).
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The key implications of this expression are that aggregate biased beliefs put too little weight on
predecessors’ signals and instead erroneously put positive weight on all past prices.

The next result summarizes some of the points above, emphasizing that the comparative statics
in our baseline model of the main text continue to hold within this richer signal structure.

Proposition B.2 (Comparative Statics in the Quasi-Public-Signal Model). Consider the signal struc-

ture of Section B.2. Beliefs and valuations in each period n follow the process described in (B.19)
so long as demand remains interior (i.e., dk ∈ (0, 1) for all k < n). In this case, the perceived

quality of each agent in each period n ≥ 2 is decreasing in their private value and increasing in all

previous prices.

C Additional Results on the Dynamic Model with an Arbitrary
Horizon

In this section, we consider some additional results from the dynamic model (Section 4) with an
arbitrary number of periods, N . Section C.1 considers the evolution of beliefs, and Section C.2
considers dynamic monopoly pricing.

C.1 Details on Belief Dynamics with an Arbitrary Number of Periods

This section supplements the discussion in Section 4.3 in the main text by providing additional
details on how beliefs and aggregate behavior evolve over time. First, consider inferences among
Generation 3. Generation 3 forms their quality expectations based on the quantity demanded in
period 2, which is given by (12) in the main text. While misinference among Generation 2 stemmed
directly from misunderstanding others’ tastes (i.e., an error in first-order beliefs), the misinference
among Generation 3 also includes a “social misinference” effect stemming from naivete about oth-
ers’ projection. Namely, individuals neglect that their predecessors failed to reach consistent beliefs.
Since uninformed consumers expect to extract s form their predecessors’ behavior, an individual in
period 3 accordingly thinks that the uninformed consumers in period 2 consistently and correctly
inferred s and are thus now informed. This presumption is false: projectors in period 2 draw biased,
taste-dependent beliefs (as in Equation 10). Nevertheless, an uninformed projector in Generation 3
with taste t thinks period-2 demand is determined by the function D̂I(p2; ω̂|t) in (9)—she does not
realize that it derives from a composition of demand functions as in (12). This observer then infers
a value of ω̂ that solves d2 = D̂I(p2; ω̂|t), which we denote by ω̂3(t). As with Generation 2, if we
let ω̄3 denote the taste-independent part of ω̂3(t), then we can write ω̂3(t) = ω̄3 − αt. Aggregate
demand among Generation 3 then follows the same form as Generation 2: d3 = D(p3; ω̄3, ω̄(s))

where D is as defined in (12).
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A similar logic unfolds in each period n ≥ 2. Indeed, Part 1 of Proposition 6 shows that the
perceived quality among uninformed agents in Generation n can be written in terms of a taste-
independent component, denoted by ω̄n. For the remainder of this appendix, we refer to ω̄n as the
aggregate biased belief in period n.

Despite a continuum of types forming distinct beliefs from each observation, the previous result
implies that we can account for this infinite-dimensional process by studying the evolution of the
unidimensional sequence, (ω̄n). Since this sequence describes the path of uninformed consumers’
beliefs, the quantity demanded in each period n, dn, is given by

D(pn; ω̄n, ω̄(s)) = λ
[
1− F (pn − ω̄(s))

]︸ ︷︷ ︸
Informed Demand

+ (1− λ)

[
1− F

(
pn − ω̄n
1− α

)]
︸ ︷︷ ︸

Uninformed Demand

. (C.1)

However, an uninformed consumer in period n+ 1 thinks that dn is determined by

D̂(pn; ω̄n+1) ≡ 1− F
(
pn − ω̄n+1

1− α

)
.4

Furthermore, ω̄n+1 must be consistent with dn for all n ≥ 2; that is, dn = D̂(pn; ω̄n+1). Hence, the
law of motion describing the process (ω̄n) is characterized by the condition

D̂(pn; ω̄n+1) = D(pn; ω̄n, ω̄(s)), (C.2)

starting from the initial condition of ω̄2 = (1− α)ω̄(s) + αp1.
Before turning to the optimal price path given this belief process, we describe outcomes under

two benchmark scenarios: (i) a constant price, and (ii) a single change in price. First, if the price is
fixed at p (e.g,. the market is in a competitive equilibrium or other frictions mandate a fixed price),
then ω̄n = ω̄2 for all n > 2. Thus, beliefs remain constant over time, and the quantity demanded
in each period matches the rational benchmark at price p. Intuitively, since the type in Generation
2 who learns correctly has a private value equal to the rational marginal type, this type will again
be marginal given that the price is constant. Hence, Generation 2 demands the same quantity as
Generation 1. Since Generation 3 then observes the same quantity as Generation 2 did, they draw
the same inference. This result reflects the notion that our dynamic process can be viewed as starting
from the steady-state: when the price stays constant, the system remains fixed.

On the other hand, when the price changes, aggregate demand will initially overreact and then
slowly converge back to the rational level given the new price. The logic is similar to the reason why
demand among the uninformed in Generation 2 is excessively sensitive to p2 (e.g., the discussion

4More precisely, an uninformed consumer in period n+1 with taste t thinks dn is determined by D̂I(pn; ω̂n+1(t)|t)
as in (9). Applying the fact that ω̂n+1(t) = ω̄n+1 − αt yields the expression here.
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around Figure 2 in the main text). However, the result below shows that the overreaction to price
changes in period 2 spills onto later generations as well. For instance, suppose the price permanently
drops in period 2. All uninformed types with a private value below the marginal type from Genera-
tion 1 overestimate ω; hence, relative to the rational benchmark, a larger measure of those who were
originally submarginal buy once the price drops. A similar overreaction occurs if the price instead
increases. (Proofs for all results in Section C are presented in Section C.3.)

Proposition C.1. Suppose there exists a period n∗ ≥ 1 such that pn = p for n ≤ n∗, and pn = p̃ 6= p

for all n > n∗. Consider s such that both (p, s) and (p̃, s) admit interior demand, and let d̃ denote

the quantity demanded at price p̃ under rational learning. Then, for any α > 0 the following hold:

1. Initial Overreaction: If p̃ > p, then dn < d̃ for all n > n∗. If instead p̃ < p, then dn > d̃ for

all n > n∗.

2. Convergence to Rational Equilibrium: |dn − d̃| is decreasing in n and limn→∞ |dn − d̃| = 0.

C.2 Dynamic Monopoly Pricing with an Arbitrary Number of Periods

Building on our analysis from Section 4.2, we consider the optimal dynamic price profile for a
monopolist facing an arbitrary number of periods. In particular, we show how our declining-price
result extends beyond N = 2 for the case of uniformly distributed tastes: the initial price is inflated
above the static monopoly price, and prices gradually decline thereafter. This result follows from a
novel trade-off the seller faces in any given period (aside from the first or last). On the one hand,
keeping the price high and restraining current sales helps to maintain inflated beliefs further into
the future. On the other hand, lowering the current price allows the seller to reap high current sales
by exploiting the inflated beliefs generated by high prices in previous periods. This intertemporal
trade-off results in an optimal price path that gradually declines.

The seller chooses a sequence of prices (p1, . . . , pN) to maximize

Π ≡ p1D
I(p1; ω̄(s)) +

N∑
n=2

pnD(pn; ω̄n, ω̄(s)) (C.3)

subject to the dynamic constraint in (C.2) for all n ≥ 2, where D(pn; ω̄n, ω̄(s)) is given by (C.1).
We focus on the case in which private values are uniformly distributed over [t, t]; see the discussion
in Section 4.2 around Figure 4 for details on this case. Additionally, we restrict attention to interior
cases where it is never optimal to serve the lowest type (which amounts to assuming t is sufficiently
low).5 Equation (C.2) implies that the aggregate biased belief—that is, the taste-independent com-

5 With uniform tastes, our usual assumption that (pM , s) admits interior demand is equivalent to ω̄(s) + t > 0 and
ω̄(s) < t− 2t. It is never optimal to serve the lowest projecting type if we also have (1− α)ω̄(s) + αp̄ < t− 2t.

10



ponent of beliefs, ω̄n, from Part 1 of Proposition 6—evolves according to

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n. (C.4)

The following lemma provides an explicit expression of this aggregate belief for the case of uni-
formly distributed tastes.

Lemma C.1. Suppose (pk, s) admits interior demand for all k ≤ n. The aggregate belief in period

n is ω̄n = (1− α)ω̄(s) + αp̃n−1, where p̃n−1 is a weighted average of past prices:

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑
k=2

λ(1− λ)n−1−kpk. (C.5)

Since the weights on all past prices in (C.5) sum to one (by virtue of being a weighted average), the
overall effect of past prices on ω̄n is always equal to α. Notably, however, more recent prices have
a bigger impact on the current belief than earlier ones.

The “stock variable” p̃n−1 captures the sway of past prices on current beliefs. As such, it is
convenient to re-write the demand of Generation n in terms of p̃n−1 rather than ω̄n. From (C.1) and
Lemma C.1, demand in period n as a function of each previous price is

D(pn; p̃n−1, ω̄(s)) =
(1− α)

(
t+ ω̄(s)

)
+ α(1− λ)p̃n−1 − (1− λα)pn

(1− α)(t− t)
. (C.6)

Given the objective function in (C.3), we then arrive at the following first-order condition for the
price in a non-terminal period n ≥ 2:

pn =
1

1− λα

(
(1− α)pM +

α(1− λ)

2

[
p̃n−1 +

N∑
k=n+1

pk
∂p̃k−1

∂pn

])
, (C.7)

where we’ve used the fact that pM =
(
t+ ω̄(s)

)
/2 when (pM , s) admits interior demand. The term

in squared brackets in Equation (C.7) highlights the intertemporal incentives in pricing. Namely,
the seller has a greater incentive to inflate the current price in order to manipulate future consumers’
beliefs when the current period is earlier in the horizon, and thus influences a greater number of
subsequent generations. This leads to an optimal price path that declines over time.

Proposition C.2. Consider the setup of Section C.2, and suppose that (pM , s) admits interior de-

mand. For any α > 0:

1. The initial price is inflated: p∗1 > pM .

2. The optimal price path is declining: For all n ≥ 2, we have p∗n < p∗n−1.

11



As discussed above, this result follows from the seller balancing the trade-off between manip-
ulating the beliefs of future consumers by maintaining a high current price versus exploiting con-
sumers’ current beliefs by undercutting the previous price. Figure C.1 provides an example of the
optimal price path for N = 20 for different degrees of projection. Intuitively, the extent to which
prices deviate from the static monopoly price increases when α is high, since in this case prices
have more sway on beliefs. Although it’s not captured in Figure C.1, a similar intuition holds as λ
decreases: deviating from the monopoly price is less costly when there are fewer informed agents.

0 2 4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

10

Figure C.1: Example price path forN = 20 for various degrees of projection. The example assumes
t = 10 and ω̄(s) = 0.

This declining price path also has natural implications for the evolution of aggregate beliefs and
demand. Since the current aggregate belief is a convex combination of the previous belief and price,
a declining price path implies that beliefs also decline over time: later generations of consumers
perceive a lower quality, on average, than earlier generations. Additionally, the quantity demanded
in periods with distorted beliefs (i.e., for period 2 onward) is “U -shaped”: the inflated price in
the first period leads Generation 2 to demand an aggregate quantity above the rational benchmark.
However, as the price levels off near the rational monopoly price, the aggregate demand converges
to the rational monopoly level.6 Finally, near the end of the horizon—once there is little remaining
incentive to maintain high prices to manipulate future generations—the seller will lower the price
below pM since the market demand has become more elastic, which again leads to significantly
more sales than the rational monopoly benchmark.

6This reflects the fact that aggregate demand in the steady state of our model matches the aggregate demand under
rational learning (Section 3). Hence, when the price is near constant for many periods, the resulting quantity demanded
converges to the rational level given that (near) constant price; see Proposition C.1.
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C.3 Proofs of Results in Appendix C

Proof of Proposition C.1. Part 1: Initial Overreaction. We will focus on the case with p̃ < p; the
case with p̃ > p is analogous and thus omitted.

Step 1: Quantity demanded is constant prior to the price change. Suppose n∗ ≥ 2. For ease of
exposition, let dI ≡ DI(p; ω̄(s)) and d̃I ≡ DI(p̃; ω̄(s)) denote the fraction of informed agents who
buy at p and p̃, respectively. In period 1, d1 = DI(p; ω̄(s)) = dI . The aggregate biased belief in
period 2 is ω̄2 = (1− α)ω̄(s) + αp, and Equation (11) then implies that the fraction of uninformed
agents who buy in period 2 isDU(p; ω̄2) = dI . Thus, the overall fraction of agents who buy in period
2 is d2 = dI . Equation (C.2) then implies that ω̄3 = ω̄2. Hence, if n∗ ≥ 3, then d3 = d2 = dI . It
is straightforward to see that this logic giving rise to a constant aggregate biased belief and quantity
demanded will continue until the first period with the new price, p̃.

Step 2: Quantity demanded increases beyond the rational benchmark when the price drops.

Since the quantity demanded is constant prior to the price change, we can (without loss of generality)
assume from now on that n∗ = 1. That is, p1 = p and pn = p̃ for all n ≥ 2. In all periods n ≥ 2,
the fraction of informed agents who buy is d̃I . By contrast, in period 2, the fraction of uninformed
agents who buy is d̃U2 ≡ DU(p̃; ω̄2) = 1 − F

(
p̃−ω̄2

1−α

)
. Importantly, d̃U2 > d̃I . To see this, note that

ω̄2 = (1− α)ω̄(s) + αp and hence

d̃U2 = 1− F
(
p̃− (1− α)ω̄(s)− αp

1− α

)
= 1− F

(
p̃− ω̄(s)− α

1− α
(p− p̃)

)
> 1− F (p̃− ω̄(s)) = d̃I , (C.8)

where the inequality follows from p − p̃ > 0. Thus, the total quantity demanded in period 2 is
d2 = λd̃I + (1− λ)d̃U2 , which exceeds the rational benchmark of d̃I .

Step 3: Quantity demanded remains above the rational benchmark in all subsequent periods.

We now consider the path of d̃Un ≡ DU(p̃; ω̄n) = 1 − F
(
p̃−ω̄n

1−α

)
for n > 2 starting from the initial

condition of d̃U2 = 1− F
(
p̃−ω̄2

1−α

)
. From the law of motion in Equation (C.2), we must have that for

all n ≥ 2,
d̃Un+1 = DU(p̃; ω̄n+1) = λd̃I + (1− λ)d̃Un . (C.9)

Thus, if d̃Un > d̃I , then d̃Un+1 > d̃I . Since we start from the base case of d̃U2 > d̃I , induction on n
implies that d̃Un > d̃I for all n ≥ 2. Thus, the aggregate quantity demanded in any period n ≥ 2 is
dn = λd̃I + (1− λ)d̃Un > d̃I , and dn therefore exceeds the rational benchmark.

Part 2. We now show that dn converges to the rational benchmark level of d̃I as n→∞. Toward
this end, we first show that for all k ≥ 1,

d̃Uk+2 =
[
1− (1− λ)k

]
d̃I + (1− λ)kd̃U2 . (C.10)
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We will show by induction that in each period k + 2, we have d̃Uk+2 = ak+2d̃
I + bk+2d̃

U
2 , and that

the coefficients ak+2 and bk+2 satisfy ak+2 + bk+2 = 1 and bk+2 = (1− λ)k. The base case (k = 1)
is immediate from (C.9), since d̃U3 = λd̃I + (1 − λ)d̃U2 For the induction step, suppose the claim is
true for k > 1. Thus, d̃Uk+2 = ak+2d̃

I + bk+2d̃
U
2 . From (C.9), this implies that

d̃Uk+3 = λd̃I + (1− λ)[ak+2D
I + bk+2d̃

U
2 ] = [λ+ (1− λ)ak+2]︸ ︷︷ ︸

≡ak+3

d̃I + (1− λ)bk+2︸ ︷︷ ︸
≡bk+3

d̃U2 . (C.11)

It is then immediate that bk+3 = (1 − λ)k+1 as required given the induction assumption of bk+2 =

(1− λ)k. To show that ak+3 + bk+3 = 1, note that ak+2 + bk+2 = 1 implies

ak+3 + bk+3 = λ+ (1− λ)ak+2 + (1− λ)bk+2 = λ+ (1− λ)[ak+2 + bk+2] = 1. (C.12)

The deviation between the quantity demanded in period n under projection and the rational
benchmark quantity is |dn − d̃I | = |λd̃I + (1− λ)d̃Un − d̃I | = (1− λ)|d̃Un − d̃I |, and (C.10) implies
that for n ≥ 2, |d̃Un − d̃I | = (1− λ)n−2|d̃U2 − d̃I |. Thus,

|dn − d̃I | = (1− λ)n−1|d̃U2 − d̃I |. (C.13)

This value is clearly decreasing in n and converges to 0 as n → ∞. Thus, dn converges to the
rational benchmark, d̃I , as n→∞. �

Proof of Lemma C.1. As noted in the text, we restrict attention to the case in which it is never
optimal to serve the lowest type. In this case, Equation (C.1) implies that the true demand function
in period n ≥ 2 is D(pn; ω̄n, ω̄(s)) = λDI(pn; ω̄(s)) + (1 − λ)DU(pn; ω̄n), where DI and DU are
specified in Equation (14). Hence,

D(pn; ω̄n, ω̄(s)) =
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)
. (C.14)

In period n+1, an uninformed observer with taste t thinks that when the preceding generation holds
a common expectation of ω equal to ω̂, then their demand is given by

D̂(pn; ω̂|t) =
(1− α)t+ ω̂ − pn + αt

(1− α)(t− t)
. (C.15)

The inferred value of this observer, denoted ω̂n+1(t), is the value of ω̂ that solves D̂(pn; ω̂|t) =

D(pn; ω̄n, ω̄(s)). By Proposition 6, Part 1, ω̂n+1(t) = ω̄n+1 − αt. Substituting this into the previous
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equality and solving for ω̄n+1 in terms of ω̄n yields the following law of motion:

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n, (C.16)

starting from ω̄2 = (1− α)ω̄(s) + αp1. We complete the proof using induction on n ≥ 2. Define

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑
k=2

λ(1− λ)n−1−kpk. (C.17)

For the base case, note that (C.16) implies that ω̄3 = λ
[
(1−α)ω̄(s) +αp2

]
+ (1−λ)[(1−α)ω̄(s) +

αp1] = (1− α)ω̄(s) + α[(1− λ)p1 + λp2] = (1− α)ω̄(s) + αp̃2. Now suppose that for any n > 2,
we have ω̄n = (1 − α)ω̄(s) + αp̃n−1. Again, (C.16) implies that ω̄n+1 = λ

[
(1 − α)ω̄(s) + αpn

]
+

(1− λ)[(1− α)ω̄(s) + αp̃n−1] = (1− α)ω̄(s) + α[(1− λ)p̃n−1 + λpn] = (1− α)ω̄(s) + αp̃n. �

Proof of Proposition C.2. As noted in the text, we restrict attention to the case in which it is never
optimal to serve the lowest type. Thus, the optimal price path is characterized by the first-order
conditions, aside from the possibility of pricing at the ceiling. We discuss the price-ceiling case at
the end of the proof and focus on the interior case first. In the interior case, profit in period n ≥ 2 is

Π(pn; ω̄n, ω̄(s)) = pnD(pn; ω̄n, ω̄(s)) = pn

(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)

)
;

in period n = 1, profit is Π̃(p1; ω̄(s)) = p1

(
t+ω̄1−p1
t−t

)
. The seller’s maximization problem is thus

max
{pn}Nn=1

(
Π̃(p1; ω̄(s)) +

N∑
n=2

Π(pn; ω̄n)

)
s.t. ω̄n+1 = ϕ(ω̄n, pn) ∀n = 2, . . . , N, (C.18)

where ϕ(ω̄n; pn) ≡ λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n is the transition function derived in Lemma

C.1. The Lagrangian is then

L = Π̃(p1; ω̄1) +
N∑
n=2

Π(pn; ω̄n) +
N∑
n=1

γn(ω̄n+1 − ϕ(ω̄n, pn)), (C.19)

where {γn}Nn=1 are Lagrange multipliers.
The plan for the proof is to first develop a set of equations (first-order conditions and Euler

equations) that characterize the optimal price path. We will then argue that the price in the final
period, pN , must be lower than pN−1 by the same logic underlying the two-period case (Proposition
4). We then argue by induction that if for any n we have pn > pn+1 > · · · > pN , then pn−1 > pn,
which establishes the declining price path (i.e. Part 2 of the proposition). Finally, we will note that
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p1 > pM (i.e,. Part 1).
We begin by deriving a set of first-order conditions that characterize the system of prices. Given

the functional forms of Π, Π̃, and ϕ, we have the following collection of first-order conditions: (i)
the FOC w.r.t. p1 is

t̄+ ω̄(s)− 2p1

t− t
= γ1α; (C.20)

(ii) the FOC w.r.t. pn for n = 2, . . . , N − 1 is(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − 2(1− λα)pn

(1− α)(t− t)

)
= γnλα; (C.21)

(iii) the FOC w.r.t. pN is(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄N − 2(1− λα)pN

(1− α)(t− t)

)
= 0, (C.22)

which follows from the fact that γN = 0 given the FOC w.r.t. to ω̄N+1; and (iv) the FOC w.r.t. ω̄n
for n = 2, . . . , N is

pn

(
1− λ

(1− α)(t− t)

)
+ γn−1 = γn(1− λ). (C.23)

From these FOCs, we can derive an “Euler equation” by using the FOC for pn−1 in (C.21)
to solve for γn−1 and then substituting this value into (C.23). The result provides a link between
pn−1 and pn in terms of the current beliefs. Equations (C.20) and (C.23)—along with the fact that
pM = (t+ ω̄(s))/2—imply that the Euler equation linking periods 1 and 2 is

p2 =

(
2λ(1− α) + α(1− λ)2

(1− λ)(2− λα)

)
p1 −

2(2λ− 1)(1− α)

(1− λ)(2− λα)
pM . (C.24)

For n > 2, equations (C.21) and (C.23) along with the expression for ω̄n in terms of past prices
(from Lemma C.1) imply that the Euler equation linking periods n− 1 and n is:

pn = φ−1pn−1 − φMpM − φ̃p̃n−2 (C.25)

where we’ve introduced the following positive constants:

φ−1 =
(2− αλ)− αλ2(2− λ)

(1− λ)(2− αλ)
, (C.26)

φM =
2λ(1− α)

(1− λ)(2− λα)
, (C.27)

φ̃ = α
λ(2− λ)

(2− λα)
. (C.28)
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To characterize the solution, we will combine these Euler equations with the FOCs for each pn.
Using our expression for ω̄n in terms of past prices (from Lemma C.1), the FOCs w.r.t. pn for n ≥ 2

from above can be equivalently written as

0 = (1− α)(t+ ω̄(s)) + α(1− λ)p̃n−1 − 2(1− λα)pn + α(1− λ)
N∑

k=n+1

pk
∂p̃k−1

∂pn

= 2(1− α)pM + α(1− λ)p̃n−1 − 2(1− λα)pn + αλ
N∑

k=n+1

(1− λ)k−npk, (C.29)

where we’ve used the fact that ∂p̃
k−1

∂pn
= λ(1− λ)k−n−1 and pM = (t+ ω̄(s))/2 in the uniform case.

Given that the demand function in period 1 is different from the one in n ≥ 2, the FOC w.r.t. p1 is

0 = (1− α)pM − 2(1− α)p1 + α
N∑
k=2

(1− λ)k−1pk (C.30)

since ∂p̃k−1

∂p1
= (1 − λ)k−2. To summarize, the N prices must solve the following system of N

equations:

p1 = pM +
α

2(1− α)

( N∑
k=2

(1− λ)k−1pk

)
...

pn =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃n−1 + λ

N∑
k=n+1

(1− λ)k−npk

)
...

pN =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃N−1

)
. (C.31)

Going forward, we will streamline notation by letting cn ≡ pn/p
M denote the “normalized”

price in each period n. This allows us to characterize the system for (c1, . . . , cN) without any
explicit dependence on the value of pM . Similarly, for all n, let c̃n−1 = p̃n−1/pM = (1− λ)n−2c1 +∑n−1

k=2 λ(1−λ)n−1−kck. Additionally, let ĉn+1 ≡
∑N

k=n+1(1−λ)k−npk/p
M =

∑N
k=n+1(1−λ)k−nck.

We now prove the following via induction: for n > 2, if cn > cn+1 > · · · > cN , then cn−1 > cn.
Base Case: cN−1 > cN . We prove the base case by showing cN−1 > cN . From (C.29), the

FOC w.r.t. cN−1 is 2(1− α) + α(1− λ)c̃N−2 − 2(1− λα)cN−1 + αλ(1− λ)cN = 0, and the FOC
w.r.t. cN is 2(1 − α) + α(1 − λ)c̃N−1 − 2(1 − λα)cN = 0. The definition of c̃N−1 implies that
that c̃N−1 = (1− λ)c̃N−2 + λcN−1. Substituting this value into the latter FOC and equating the two
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FOCs yields the following necessary condition:

αλ(1− λ)c̃N−2 =

(
2(1− λα) + αλ(1− λ)

)
[cN−1 − cN ]. (C.32)

It is straightforward to verify that 2(1− λα) + αλ(1− λ) = 2− αλ[1 + λ] > 0 for any α ∈ (0, 1)

and any λ ∈ (0, 1). Thus, since the left-hand side of (C.32) is strictly positive (it is a weighted sum
of normalized prices), we have cN−1 > cN .

Induction step: cn > cn+1 for n ≥ 2. Consider n ∈ {3, . . . , N − 1} and suppose that cn >
cn+1 > · · · > cN . We will show that cn−1 > cn. To do so, we first derive an expression for cn−1

purely in terms of (cn, . . . , cN). Note that neither the Euler equation for cn−1 nor the FOC w.r.t.
cn−1 provides this: the former characterizes cn−1 as a function of previous prices, (c1, . . . , cn−1) and
the latter characterizes cn−1 as a function of previous and future prices. To obtain this expression,
note that (C.25) implies c̃n−2 = (φ−1cn−1 − cn − φM) /φ̃. Substituting this value into the FOC w.r.t.
cn−1 (Equation C.29) yields

2(1− λα)cn−1 = 2(1− α) + α(1− λ)
1

φ̃

(
φ−1cn−1 − cn − φM

)
+ αλĉn. (C.33)

From the definition of ĉn, note that ĉn = (1− λ)cn + (1− λ)ĉn+1. Substituting this expression into
(C.33) and substituting the values of the constants φ−1, φM , and φ̃ from above (Equations C.26 to
C.28), and simplifying, reveals that

cn−1 = φ−1cn + φM −
(

λ

1− λ

)
φ̃ĉn+1. (C.34)

Recall that, by assumption, cn > cn+1 > · · · > cN , and we want to show cn−1 > cn. From (C.34),
this condition is equivalent to φ−1cn + φM −

(
λ

1−λ

)
φ̃ĉn+1 > cn, and hence equivalent to

[φ−1 − 1]cn >

(
λ

1− λ

)
φ̃ĉn+1 − φM . (C.35)

From the definition of φ−1, we have φ−1 − 1 > 0. Notice that (C.34) must hold for all n ∈
{3, . . . , N − 1}, and hence cn = φ−1cn+1 + φM −

(
λ

1−λ

)
φ̃ĉn+2. Moreover, note that the definitions

of φ−1 and φ̃ are such that φ−1 = (1−λφ̃)/(1−λ); substituting this into the previous equality along
with the fact that ĉn+1 = (1− λ)cn+1 + (1− λ)ĉn+1 implies that

(
λ

1−λ

)
φ̃ĉn+1 = −(1− λ)cn + (1−

λ)φM + cn+1. Substituting this into the inequality of interest (Condition C.35) yields the equivalent
condition of [φ−1−λ]cn > cn+1−λφM . Since we know cn > cn+1 and since φ−1−λ > 0 (because
φ−1 > 1, as noted above), the previous condition will hold at cn > cn+1 if it holds at cn = cn+1.
Thus, it suffices to show that [φ−1 − λ]cn+1 > cn+1 − λφM ⇔ [φ−1 − λ − 1]cn+1 > −λφM . The
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previous condition holds so long as φ−1 − λ − 1 > 0, which can be directly confirmed from the
definition of φ−1 in (C.26). This completes the induction step.

So far, we have verified that cN−1 > cN implies that cn > cn+1 for all n ≥ 2. To complete the
proof, we must show that c2 > c3 > · · · > cN implies that c1 > c2. Since the Euler equation linking
periods 1 and 2 is different from one in all other periods, we cannot rely on (C.34) as above. Instead,
consider the FOCs in periods 1 and 2 (Equations C.30 and C.29), which are 2(1−α)−2(1−α)c1 +

αĉ2 = 0 and 2(1 − α) + α(1 − λ)c̃1 − 2(1 − λα)c2 + αλĉ3 = 0, respectively. Using the fact that
ĉ2 = (1− λ)c2 + (1− λ)ĉ3, equating the two FOCs and simplifying yields the condition

α[(1− 2λ)ĉ2 + 2(1− λ)c2] = ζ[c1 − c2], (C.36)

where ζ = [2(1 − α) + α(1 − λ)] = 2 − α(1 + λ); note that ζ ∈ (0, 2) for all α ∈ (0, 1).
Thus, we have c1 > c2 so long as (1 − 2λ)ĉ2 + 2(1 − λ)c2 > 0 ⇔ 2(1 − λ)c2 > (2λ − 1)ĉ3.
While this holds immediately whenever λ < 1/2, we must show it holds more generally. Recall
that ĉ3 =

∑N
k=3(1 − λ)k−2ck. Substituting this into the previous inequality yields the equivalent

condition of 2(1−λ)c2 > (2λ− 1)
∑N

k=3(1−λ)k−2ck ⇔ 2c2 > (2λ− 1)
∑N

k=3(1−λ)k−3ck. Since
we’ve assumed c2 > c3 > · · · > cN , a sufficient condition for the previous inequality is

2c2 > (2λ− 1)c2

N∑
k=3

(1− λ)k−3 ⇔ 2 > (2λ− 1)
N−3∑
k=0

(1− λ)k. (C.37)

Recall that the partial sum of the geometric series is
∑N−3

k=0 (1−λ)k is strictly less than 1
1−(1−λ)

= 1
λ

.
Thus, a sufficient condition for Condition (C.37) is 2 > (2λ− 1) 1

λ
, which necessarily holds.

Finally, it is immediate from the FOC for p1 in (C.29) that p1 > pM . Similarly, if the FOC in
period 1 does not hold because the seller prefers setting p1 equal to the price ceiling, p̄, then the
logic of this proof remains unchanged. If p1 = p̄, then clearly we have p1 > pM ; moreover, the
seller would never charge p2 = p̄ if p1 = p̄ since she strictly profits from a price decrease in period
2. Thus, it is immediate that we still have p2 < p1 = p̄ in this case, and hence prices will follow the
interior path described above from period 2 onward. �
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