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Abstract

We study social learning in several natural, yet under-explored, environments among people who
naively think each predecessor’s action reflects solely that person’s private information. Such
naivete leads to striking forms of mislearning, yielding states of the world that agents always
come to disbelieve even when true. In such states, even when an early generation learns the
truth, later generations will “unlearn” and develop false beliefs. We demonstrate manifestations
of this result in a variety of settings. When the qualities of alternatives are independent, naive
inference polarizes perceptions: people overestimate the quality of one option and underestimate
the quality of all the others. We show how these “extreme” perceptions lead to under-diversified
investments and excessive herding among consumers with diverse tastes.
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1 Introduction

People often rely on the behavior of others to inform their decisions. Consumers select restaurants
and films based on the crowds they draw, investors adopt financial strategies based on their friends’
portfolios, and both doctors and patients consider the popularity of a drug when choosing prescrip-
tions. Understanding how knowledge spreads through observational learning is the premise of a large
literature, starting with Banerjee (1992) and Bikhchandani et al. (1992). They emphasize how ratio-
nality might lead people to imitate others. Eyster and Rabin (2014) show, however, that in virtually
all settings, rationality demands limited imitation (and often anti-imitation), since imitation by ear-
lier people renders the information in group behavior massively redundant. The rationality needed
to fully discount this redundancy when we see all our neighbors select the same restaurant, stock, or
drug seems unrealistic. As such, a growing literature (e.g., DeMarzo et al., 2003; Eyster and Rabin,
2010, 2014; Dasaratha and He, 2020) studies forms of “naive” social learning.1 In these models,
people neglect the redundancies in the information gleaned from others’ behavior, which causes ex-
cessive imitation and overconfidence. This paper explores novel implications of naive social learning
that emerge in an array of environments beyond those previously studied.

To first develop an intuition for naive inference, consider privately informed agents who sequen-
tially choose from a set of options with unknown payoffs. Each agent observes the choices of all
those before acting her, but she neglects that her predecessors are themselves learning from their

predecessors. Thus, she treats each observed action as if it reflects solely that predecessor’s private
information. For instance, a naive consumer thinks each customer buying a popular new product
has an independent positive signal about the product, and thus forms overly strong beliefs about its
quality. Eyster and Rabin (2010) (henceforth ER) formalize this logic and show that in information-
rich environments where rational players surely learn the truth, naive players likewise grow fully
confident—but with positive probability in the wrong thing.

By examining a different, yet natural, range of environments than earlier papers, we reveal fur-
ther principles of naive learning, and we use these principles to draw out welfare implications and
comparative statics across several applications. Our primary insight is that naivete sharply limits
the states of the world in which society may come to believe. Specifically, there can exist “aban-
doned states” that people always come to disbelieve even when they are true. In fact, even when an
early generation knows for certain that such a state is true, later generations “unlearn”: they become
convinced of something false. The nature of these abandoned states generates various economic im-

1In addition to DeMarzo et al. (2003) and Dasaratha and He (2020), several other papers study heuristic rules of
thumb that embed redundancy neglect in network settings. Such papers, which typically build from the canonical model
by DeGroot (1974), include Golub and Jackson (2010); Levy and Razin (2018); Molavi et al. (2018); Chandrasekhar
et al. (2020) and Mueller-Frank and Neri (2021). There are also papers studying other biases in social learning that are
distinct from the notion of redundancy neglect; see, e.g., Guarino and Jehiel (2013); Gagnon-Bartsch (2016); Bohren and
Hauser (2021) and Frick et al. (2020). We further discuss related literature in Section 2.3.
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plications. For instance, when inferring the payoff difference between two independent alternatives,
naive learners maximally exaggerate this difference. Not only will they grow too confident that a
popular medicine (e.g., the name brand) is better than an unpopular one (e.g., a generic), they infer
it is much better—even when in reality they are nearly identical. We show that such exaggeration
can lead to both severe under-diversification in investment settings and to costly herding in markets
with diverse tastes. People who naively exaggerate quality differences, for instance, may engage in
wasteful queuing or spending to such a degree that they are worse off observing others than if they
made decisions in isolation.2

Previous models of naivete obscure these results by focusing on environments with just two states
of the world and common preferences. While rational models assume this for analytical ease, the
tractability of the naive model allows us to study a broader range of settings, including those that
better reflect features of many economic examples of interest. In doing so, we reveal new implica-
tions of naivete. One such result is deterministic mislearning: while ER show that people mislearn
in the canonical environment only when early signals are misleading, the existence of “abandoned
states” in richer settings guarantees mislearning irrespective of early signal realizations. In fact, to
articulate the different nature of our mislearning, we consider environments where a large generation
of players take actions each round. This implies that the collection of early signals is (essentially)
never misleading. Even when we neutralize the primacy effects that drive bounded learning in ra-
tional models and drive mislearning in ER, naive inference still leads society astray through agents’
misunderstanding of the informational content of past actions. Put differently, the type of mislearning
that we elucidate in this paper can be thought of as structural mislearning: whether society mislearns
is preordained by the environment itself and does not depend on the happenstance of early signals.
Moreover, although our focus on large generations helps make this point stark, our main qualitative
results do not require this assumption: we also show that when players act in single file, as in the
canonical model, they will still deterministically come to believe something false in any of the states
we classify as “abandoned.”

Section 2 introduces our general model. In every period, a new generation of players choose from
an identical set of actions and receive payoffs that depend on their own action and an unknown state
of the world. Each player updates her beliefs based on predecessors’ behavior and her conditionally
independent private signal. Players naively infer as if others’ actions reflect solely their private infor-
mation and the common prior. While most of our results hold more generally, we focus on a setting
with two key features: each generation (i) is large, and (ii) observes only the preceding generation.

2While we identify new ways in which naive learning harms welfare, earlier models already demonstrate that naive
observers can be made worse off in expectation by observing others’ choices. This never happens with full rationality.
In herd models such as Bikhchandani et al. (1992), information cascades prevent fully-rational players from learning
the state. However, rational players are not harmed by observing others—the informational externality simply prevents
society from reaching the first best.
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Together, these assumptions simplify analysis. And the former makes long-run mislearning more
surprising: because the first generation consists of a large number of people acting independently,
Generation 2 becomes nearly certain of the true state.3

Although Generation 2 learns correctly, naive inference can lead Generation 3 astray. Generation 3
wrongly assumes each person in Generation 2 acts “autarkically”—relying only on her own signal—
and fails to realize that each person in Generation 2 in fact has nearly perfect information. As such,
Generation 3 comes to believe in the state most likely to generate those signals necessary for autarkic
behavior to resemble the behavior of Generation 2.4 If this is the true state, then Generation 3 and
all subsequent generations learn correctly. Otherwise, Generation 3 “unlearns,” and long-run beliefs
never settle on the truth. Whenever public beliefs do converge, they do so to a fixed point of this
process: when interpreted as autarkic, the behavior of those nearly certain in state ω is best predicted
by ω.

To give an example, consider investors learning about the return on two projects,A andB. Suppose
that investors’ priors are such that the payoff of B, ωB, is a fifty-fifty draw from {0,m} and ωA is
an independent fifty-fifty draw from {l, h}, where h > m > l > 0; that is, A’s high payoff is better
than B’s, and A’s low payoff is also better than B’s. Suppose the signal distributions conditional
on (ωA, ωB) have the following intuitive properties: (i) the percent of investors who would choose
A based private information alone is strictly increasing in ωA − ωB, and (ii) this percent exceeds
50% if and only if ωA > ωB. If in truth (ωA, ωB) = (h,m), then a majority choose A in period
1. From this, investors in period 2 correctly infer that A outperforms B, so all choose A. In the
third round, investors’ best explanation for such a consensus is that A has the largest possible payoff
advantage overB, as this would maximize the likelihood that an investor selectsAwhen using private
information alone. Following this logic, Generation 3 comes to believe the state is (h, 0) whenever
they see others unanimously pick A—that is, whenever (ωA, ωB) ∈ {(l, 0), (h, 0), (h,m)}. Thus, in
states (l, 0) and (h,m), investors inevitably mislearn by way of exaggerating the payoff difference
between the projects.5 When investors act based on the extremity of their beliefs—for instance, they
can contribute more resources toward A—this exaggeration will generate costly mistakes.

Section 3 discusses general implications of naive inference for long-run beliefs. First, based on
the “fixed-point” logic above, we characterize the set of states on which public beliefs can settle. We
draw out several implications of this characterization, revealing the extent to which naive inference
limits the conclusions society might draw. For instance, the set of stable long-run beliefs may be a

3We discuss the robustness of our results to alternative observation structures at relevant points throughout the paper.
4Generally, the confident behavior of Generation 2 will not match the action distribution predicted by autarkic play

in any state. Because naive observers attribute such discrepancies to sampling variation, Generation 3 grows certain of
the state that best predicts autarkic behavior. With naivete, this state minimizes the cross entropy between the realized
action distribution and the one predicted by autarkic play.

5In state (l,m) investors correctly learn that B is optimal, as (l,m) is the only state in which the majority selects B.
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singleton—in which case society draws the same conclusion no matter what is true—or it may be
empty—in which case beliefs continually cycle.

Section 4 presents a simple yet stark implication of naive inference in settings where, as in the
investment example above, individuals have common preferences and options have independent pay-
offs. Namely, perceptions of payoffs grow “polarized”: people come to believe the best option is as
good as possible, and all lesser options are as bad as possible. Once a herd starts on option A, people
think that each of their many predecessors who took A received an independent signal indicating that
A is better than the alternatives. Under natural monotonicity assumptions on the signal structure, this
misconception leads to these extreme, polarized beliefs.6

Section 5 examines the consequences of extreme beliefs when people have diverse preferences over
a set of alternatives (e.g., medical treatments) relative to an outside option (e.g., no treatment). In
such settings, naivete can cause excessive and costly herding where all people choose an option that is
beneficial for only a minority. Since naivete leads people to exaggerate the quality of popular options,
consumers with low valuations are enticed to follow the herd when they should in fact pursue their
outside option. Interestingly, we show that such “over-adoption” can be triggered by large choice
sets. For example, suppose patients with an illness can either experiment with unproven treatments
or abstain, and most patients abstain unless they are fairly confident a treatment works. However,
a minority in dire straits will experiment no matter what. If the number of available treatments is
sufficiently large, then society comes to believe one is universally beneficial even when none are.
In this case, Generation 2 learns that none are fully effective: those who are not desperate will
abstain, and those in dire need will herd on the “least bad” treatment. Naive observers, who mistake
the consensus among the desperate as independent decisions, will then grow convinced that this
treatment works. Namely, with so many options to pick from, they find it unlikely that predecessors’
choices would coincide unless this treatment were truly effective. Hence, all patients—including
those for which treatment is suboptimal—end up adopting a false cure.

In Section 6, we apply the model to a portfolio-choice problem and demonstrate how naivete
distorts investors’ allocation of wealth across risky assets. Perceptions of an asset’s value contin-
ually grow more extreme over time, resulting in severe under-diversification. To illustrate, suppose
investors know the expected return of assetA, but learn aboutB’s average return, ωB, from predeces-
sors’ allocations.7 In settings where first-period allocations resolve this uncertainty among rational
investors, naive investors overreact to later allocations as if they continue to reflect new information.

6Because ER considers a binary-state model where the payoff difference between any two actions has only two
possible values, their setting obscures our result that naive players maximally exaggerate the payoff difference between
the herd action and its alternatives.

7An important feature of our model is that people observe their predecessors’ behavior but not the outcomes of these
decisions. For this reason, we consider assets that pay off long after the initial investment decision, such as real-estate or
education.
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The path of naive investment depends on how ωB compares to expectations. If it beats them, then
investors in period 2 correctly infer this and allocate more to B. However, because later investors ne-
glect that this increase stems from social learning, they wrongly attribute it to new, more optimistic
information. Investment in B increases yet again. As this process plays out, investors eventually
allocate all their wealth to B. Moreover, when ωB is sufficiently far from priors, investors will even-
tually allocate everything to the inferior asset. Our prediction of over-reaction to private information
and momentum accords with Glaeser and Nathanson (2017) analysis of housing-price data, which
suggests that medium-run momentum derives, in part, from naive inference based on past market
prices.8

We conclude in Section 7. There, we note how our results differ from the predictions of some other
forms of naive inference considered in the literature. (See also Section 2.3 for similar discussions.)
We additionally propose a few natural extensions that are somewhat beyond the scope of our particu-
lar solution concept. These include asset pricing and investment settings where agents endogenously
choose when to act.

2 Model

This section presents our baseline model. We first describe the social-learning environment (Sec-
tion 2.1) and then define naive inference (Section 2.2). We compare our approach to related models
in Section 2.3.

2.1 Social-Learning Environment

We consider a sequential-decision environment similar to the canonical models of observational
learning developed by Banerjee (1992) and Bikhchandani et al. (1992). In those models, a new
player enters in each period and makes a once-and-for-all decision. We expand on those models
by allowing for heterogeneous preferences (as in, e.g., Smith and Sørensen, 2000), and we consider
multiple players acting per period instead of just one.

In every period t = 1, 2, ..., a new generation of N ≥ 1 players enters, and each player simultane-
ously chooses an action from the set A ≡ {A0, ..., AM−1} with M ≥ 2. Each player is labeled by
(n, t), where t is the period in which she acts and n ∈ {1, ..., N} is her index within Generation t.
Let x(n,t) ∈ A denote Player (n, t)’s action and let at(m) denote the fraction of players in period t
who choose Am. Vector at = (at(0), ..., at(M − 1)) is the distribution of actions chosen in period t.9

8In a more recent paper, Bastianello and Fontanier (2021) build on this idea to derive more detailed implications of
naive inference in asset markets.

9We extend the model to a continuous action space in one of our applications.
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States and Preferences. Players aim to learn a payoff-relevant state of nature ω ∈ {ω1, ω2, ..., ωK} ≡
Ω, where K ≥ 2. Players share a common prior π1 ∈ ∆(Ω), where π1(k) > 0 denotes the probabil-
ity of state ωk. Each Player (n, t)’s payoff from action Am depends on ω and her “preference type”
θ(n,t) ∈ {θ1, θ2, ...θJ} ≡ Θ; payoffs are denoted by u(Am|ω, θ). Each player’s preference type is pri-
vately known, and we assume these types are i.i.d. across players according to a commonly known
distribution λ ∈ ∆(Θ). Given that we will focus on large generations (i.e., N → ∞), we make the
inconsequential simplifying assumption that the realization of preference types is fixed over time: in
Generation t = 1, θ(n,1) is drawn according to λ for each n = 1, . . . , N , and θ(n,t) = θ(n,1) for all
t > 1.10

Private Information. Players learn about ω from two channels: private signals and observing
others. Each Player (n, t) receives a random private signal s(n,t) ∈ Rd, d ≥ 1, about the state of
nature. Conditional on state ω, private signals are i.i.d. across players with c.d.f. F (·|ω) and density
(or mass) function f(·|ω). We assume these distributions have identical support S ⊂ Rd for each
ω ∈ Ω. We will place some mild restrictions on the signal structure below.

Public Information. We focus on an observation structure that differs from canonical models in two
ways. First, we assume players observe the behavior of only the previous generation. Each Player
(n, t)’s information set I(n,t) ≡ {s(n,t), at−1} consists of her private signal and the distribution of
actions in t− 1. Second, we focus on the limit in which each generation grows large (i.e., N →∞),
which—as we show below—ensures that each generation reaches a nearly confident consensus on
the state.11

This setting can be interpreted as a series of large overlapping generations, where each generation
is present for two periods: in the first, individuals observe the actions of the preceding generation;
in the second, they take actions based on inferences from this observation. While we highlight the
implications of our setup in detail below (end of Section 2.2), it is worth emphasizing the rationale for
this setup. First, it will streamline the analysis by generating (nearly) deterministic belief and action
dynamics. Second, it stacks the deck in favor of correct learning: if naive agents fail to learn from
a large population whose behavior reveals the state to rational observers, then they certainly won’t
learn in canonical observation structures that generate weaker public signals. Below, we explicitly
show that our central result restricting the states that naive agents can learn indeed extends to other

10With large generations, the realized distribution of preference types within any generation is nearly identical across
periods even when types are redrawn each round; this follows trivially from the law of large numbers (LLN). This as-
sumption therefore simplifies the exposition by reducing the need to continually invoke the LLN. We drop this assumption
when we consider robustness to settings without large generations.

11In canonical social-learning environments (e.g., Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen,
2000), players observe the complete history of actions and take actions in “single file” (i.e., N = 1). Our observation
structure with “large generations” is not typically studied because it is uninteresting under rationality: rational agents
immediately learn the state after a single round of actions. We emphasize that with naive agents, this structure will lead
each generation to grow confident in some state, but not necessarily the correct one.
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observation structures, including the canonical one in which players act in single file and observe
all previous actions in order (e.g., Bikhchandani et al., 1992; Smith and Sørensen, 2000; Eyster and
Rabin, 2010). Hence, we focus on our “overlapping-generations” structure solely for tractability and
to starkly highlight how the dynamics of rational and naive beliefs differ.

We define the public belief as the belief a player would form solely from observed actions (i.e.,
net of her private signal). Upon observing at−1, Generation t forms public belief πt ∈ ∆(Ω) using
Bayes’ rule:

πt(j) =
Pr(at−1|ωj)π1(j)∑K
k=1 Pr(at−1|ωk)π1(k)

. (1)

Our model of naivete will posit that players have erroneous beliefs about Pr(at−1|ω)—the dis-
tribution of predecessors’ behavior in a given state. Aside from this mistake, each Player (n, t)

is rational: she uses Bayes’ Rule to combine the public belief with her signal to form posterior
p(n,t) ∈ ∆(Ω), and then takes the action that maximizes her expected utility. Hence, x(n,t) =

arg maxA∈A
∑K

k=1 p(n,t)(k)u(A|ωk, θ(n,t)).
Finally, to avoid trivial (and non-generic) complications arising from indifference, we assume each

preference type θ ∈ Θ has a unique preferred action when the state is known.

Assumption 1. For each state ω ∈ Ω and each type θ ∈ Θ, the set of optimal actions,

arg maxA∈A u(A|ω, θ), is single-valued.

Additionally, whenever a player is indifferent between actions due to uncertainty over ω, we assume
she follows a commonly known tie breaking rule.12

2.2 Naive Social Inference

Following Eyster and Rabin (2010), we assume individuals naively think that any predecessor’s ac-
tion depends solely on that player’s private information. This implies that a naive agent infers from
past actions as if all her predecessors ignored the history of play and hence learned nothing from
others’ actions. That is, she infers as if all her predecessors acted in “autarky”. Hence, a naive player
has an erroneous model of Pr(at−1|ω)—the likelihood of predecessors’ actions conditional on the
state—and consequently form biased public beliefs (Equation 1). In reality, this likelihood depends
on the beliefs of Generation t − 1, which in turn depend on what Generation t − 1 observed, and
so on. Naive players, however, neglect the social inference conducted by preceding generations and
infer from at−1 as if it reflects solely the private signals of those players acting in Generation t− 1.13

12The specific rule is irrelevant for our results, but in specific applications we assume players break indifference by
selecting the option with the lower index.

13Naive players fail to realize that past behavior (in t ≥ 2) already incorporates all useful private information. In
simple single-file settings, this generates over-weighting of early signals.
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To formally define and analyze naive learning, we will work directly with “action distributions.”
These distributions over the action space, A, specify the frequency that each action Am is chosen as
a function of (i) the state, (ii) the distributions of signals and preferences, and (iii) prior beliefs. The
action distributions will represent a convenient way to summarize primitives of the model (signals,
preferences, and prior beliefs), and will in fact be sufficient for much of our analysis.

Two types of action distributions are of particular importance. The first is what we call an autarkic

action distribution: the theoretical distribution of actions in state ω assuming players act solely on
private signals and the prior, π1.

Definition 1. The autarkic distribution Pω ∈ ∆M is the distribution of actions generated by autarkic

play in state ω: Pω(m) is the probability that a player chooses option Am when her beliefs are based

solely on her signal and the prior.14

In state ω, the actions taken by the first generation will follow the autarkic distribution Pω regardless
of whether players are rational or naive. A naive player, however, expects behavior to be autarkic in
every period.15

Definition 2. A naive player infers from each predecessor’s action as if, conditional on ω, it were an

independent draw from Pω.

Although naive players expect to see behavior that follows an autarkic distribution in each round,
they actually see behavior of predecessors who have themselves formed confident beliefs about the
state by observing those before them. Thus, the second type of action distribution central to our
analysis is what we call an aggregated-signal distribution: the theoretical distribution of actions
taken by players who are certain (either rightly or wrongly) that the state is ω. The aggregated-signal
distribution is like an autarkic distribution, but the prior belief π1 is replaced with a degenerate belief
on ω.

Definition 3. The aggregated-signal distribution Tω ∈ ∆M is the distribution of actions generated

by players who put probability 1 on ω: Tω(m) is the probability that a player chooses option Am
when certain the state is ω.16

14More formally,

Pω(m) =

∫
S

∑
θ∈Θ

λ(θ)ζ(m|θ, s, π1) dF (s|ω),

where ζ(m|θ, s, π1) is the probability that type θ chooses action Am when relying solely on her private signal s and the
prior π1. Given a fixed tie-breaking rule, ζ(m|θ, s, π1), and hence Pω , are well defined.

15The definition of naivete originally proposed by Eyster and Rabin (2008, 2010)—which they call “Best-Response
Trailing Naive Inference” (BRTNI)—posits that naive players best respond to the belief that all others are fully cursed in
the sense of Eyster and Rabin’s (2005) “cursed equilibrium”.

16The “aggregated-signal distribution” reflects the behavior of a player who has observed an arbitrarily large collection
of independent signals drawn from F (·|ω), assuming the state is identifiable from signals. More formally, letting δω
denote a degenerate belief on state ω, Tω(m) =

∑
θ∈Θ λ(θ)ζ(m|θ, δω) where ζ(m|θ, δω) is the probability that type θ

chooses action Am when certain the state is ω.
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The families of both the autarkic distributions, {Pω}ω∈Ω, and the aggregated-signal distributions,
{Tω}ω∈Ω, depend solely on the primitives of the model. A main result below shows that the relation-
ship between these two families dictates which states a naive society can come to learn.

Finally, we make three mild assumptions on the information structure.

Assumption 2. The collection of signal distributions {F (·|ω)}ω∈Ω is such that:

1. (Full Support.) For all ω ∈ Ω, Pω has full support over A.

2. (Identifiability.) For all ω, ω′ ∈ Ω, Pω 6= Pω′ whenever ω 6= ω′.

3. (Bounded Signals.) There exists a finite β ∈ R+ such that for any signal s ∈ S and any two

states ω and ω′, the log-likelihood ratio is such that

−β ≤ log

(
Pr(ω|s)
Pr(ω′|s)

)
≤ β.

Assumption 2.1 implies that, for each action Am ∈ A, there exists a possible signal realization that
would lead some type to choose Am based on that signal alone. Thus, naive players think each action
is taken with positive probability in autarky. We impose this assumption simply to ensure that naive
players never observe actions they thought were impossible.

Assumption 2.2 implies that autarkic distributions are distinct across states. With large generations,
this ensures that naive players think that at−1 identifies the state as N grows large.

Assumption 2.3 implies that signals have bounded informativeness. Consequently, if the public
belief in any Generation t puts sufficiently high probability on state ω̂, then the posteriors of all
agents in Generation twill continue to put high probability on ω̂ no matter their private signals. As we
formalize in Lemma 1 below, this induces (with high likelihood) a deterministic path of public beliefs
and actions across generations. In particular, if the observed behavior from Generation 1 causes
Generation 2 to put sufficient weight on the true state (which happens with arbitrarily high probability
as N → ∞ under Assumption 2.2), then private signals will have no bearing on decisions after
Generation 1. Thus, the path of public beliefs and actions across generations is entirely determined
by the initial condition (i.e., the state the second generation infers from the first).17

The purpose of these assumptions is two fold. First, the deterministic dynamics they induce are
very simple to analyze. Second, they illuminate how naive inference can generate learning failures

17Our bounded-signal assumption is mild given that the constant β in Assumption 2.3 is arbitrary. We therefore
accommodate signals of any strength so long as there exists some upper bound to their informativeness. If we allowed
for unbounded signals, our analysis would need to account for the vanishingly unlikely event that the public belief in
some Generation t puts high probability on ω yet the behavior in Generation t is far from Tω (in the sense of cross
entropy, defined below in Section 3). The probability of this event is non-zero with unbounded signals since it is possible
for a fraction of players within a single generation to receive arbitrarily strong yet misleading signals.
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in even the most favorable information structures. Our identifiability assumption (2.2) with large
generations implies that learning is immediate for rational agents. Despite this, we show that naive
agents may continually disbelieve the true state. Thus, the forms of misinference we identify do
not stem from actions revealing insufficient data (as in, e.g., Bikhchandani et al., 1992 or Smith and
Sørensen, 2000). Rather, they emerge in data-rich settings where we might expect learning to occur.
Given that naive agents fail to learn in our data-rich settings, one might expect a similar failure in the
canonical setting where just a single agent acts per round; we indeed verify this below in Proposition
3.

To preview the analysis in the remainder of the paper, we sketch how beliefs evolve in our model
when the state is ω. Since Generation 1 acts solely on private information, their distribution of ac-
tions, a1, converges to Pω as N → ∞. Next, our identifiability assumption implies that Generation
2, whether rational or naive, grows arbitrarily certain of ω upon observing a1. Each player in Gen-
eration 2 then takes the action that is optimal for her type in state ω, and thus a2 converges to Tω as
N →∞. Rational followers understand that a2 reflects the behavior of agents who essentially know
the state. Hence, so long as Tω is unique, rational public beliefs and behavior immediately converge:
if they are rational, Generations 3 and beyond will continue to believe the state is ω.

While rational learning is trivial in this environment, a naive Generation 3 may grow certain of a
state different from ω. Because they think others act solely on private signals, a naive Generation
3 infers from a2 as if it resulted from autarkic play. Hence, they ask themselves what distribution
of signals Generation 2 must have received in order to take actions a2 in autarky. Generation 3

then becomes nearly certain of the state most likely to generate those signals. This inference is
flawed since Generation 2 did not act in autarky—they learned from their predecessors. A similar
mistake will play out among each successive generation: Generation t ≥ 3 observes the behavior
at−1 of a prior generation who is in fact (nearly) certain of some state, but wrongly interprets at−1

as if it were based on weak private signals. In the language of our formal setup, naive agents treat
at−1 as a multinomial random variable governed by some autarkic distribution Pω when in fact it is
governed by some aggregated-signal distribution, Tω̂. As such, the relationship between these classes
of distributions will determine what naive agents come to believe. We formalize this relationship in
Section 3.

2.3 Related Models

Before turning to long-run dynamics in Section 3, we briefly review how our analysis compares to
both ER and other papers on naive social learning. Given that we adopt ER’s model of naivete,
our approach differs from theirs primarily in the type of environments we consider. Other papers,
however, examine quite different forms of naive learning.
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ER explores a binary-state model with a continuum of actions, common preferences, and one
player acting per round. Specifically, Ω = {0, 1}, A = [0, 1], and u(x|ω) = −(x − ω)2. With these
preferences, a player optimally chooses x ∈ [0, 1] equal to her belief that ω = 1. This implies that
actions perfectly reveal an agent’s posterior belief. ER’s main result is that, with positive probability,
a naive society grows confident in the wrong state. A naive player in period t treats the announced
posterior of the player in t− 1 as that player’s independent signal, despite the fact that it also incor-
porates the signals of players in all prior periods. As such, players vastly over-count early signals.
If early signals are sufficiently misleading—which happens with positive probability—then players
grow confident in the wrong state.18

Naivete leads society astray in ER’s environment only when early signals are misleading. However,
with our “large generations” assumption, early signals are (essentially) never misleading. As such,
when large populations act each round in ER’s two-state setting, a naive society always converges
to the truth. In contrast, we emphasize that in other natural environments, naive observers may still
converge to false beliefs even when early generations perfectly reveal the state.

Additionally, ER’s two-state framework implies that if people learn the payoff of action x = 1,
then they implicitly learn the payoff of all other actions. In contrast, we consider settings where
payoffs are independent across actions: knowledge that x is superior to x′ does not reveal by how

much x is preferred to x′. Such a distinction matters, for instance, when deciding how much to pay,
or how long to wait, to obtain x over x′. As we will show, naive agents systematically overestimate
the payoff of the herd action relative to those not chosen. In this sense, naive inference restricts which
constellation of payoffs agents may come to believe.

Our model of naive inference—adopted from ER—is related to several other approaches that are
similarly motivated by the intuition that people neglect informational redundancies when learning
from others. DeMarzo et al. (2003) propose a model of “persuasion bias” in which neighbors in
a network communicate posterior beliefs. Building on DeGroot’s (1974) model of consensus for-
mation, they assume players form posteriors by taking the average of neighbors’ beliefs as if they
reflect independent signals with known precision. Since players neglect that stated beliefs already
incorporate signals previously shared, they over-count early signals.19 Our model is also related to
Level-k thinking (e.g., Crawford and Iriberri, 2007). Naive agents act like Level-2 thinkers, as they
best respond to the belief that others use only private information (Level-1).20 Additionally, Bohren

18Eyster and Rabin (2014) show that this intuition holds even when players over-count predecessors’ signals by any
arbitrarily small amount. These results stand in sharp contrast with the rational model, in which wrong herds are likely
to occur only in settings where players remain relatively uncertain of the state. Rational models never lead to confident
beliefs in a false state; they are not compelling models of society thinking it knows things it does not.

19For more recent papers that study generalizations of the DeGroot learning rule, see Golub and Jackson (2010); Levy
and Razin (2018); Molavi et al. (2018); Chandrasekhar et al. (2020) and Mueller-Frank and Neri (2021).

20The equivalence between naive inference as defined by ER and Level-2 thinking is not general, but it happens to
hold in many models of social learning where players are concerned with others’ irrationality only to the extent that it
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(2016) studies a variant of the canonical two-state model in which only a fraction α ∈ [0, 1] of play-
ers can observe past actions and players have wrong beliefs about α. This model corresponds with
ours when α = 1 and all players think α̂ = 0. Similar to our argument about ER, agents in Bohren’s
(2016) model converge to the truth as generations grow large.

Empirically, few experiments are designed to specifically test ER’s model of naivete. ER describe
how findings from earlier experimental work, like Kübler and Weizsäcker (2004), suggest that peo-
ple neglect informational redundancies in social learning.21 Eyster et al. (2018) find more direct
evidence. They first tell each subject the difference in the number of heads and tails from 100 in-
dependent flips of a coin. Then, moving in sequence, each subject estimates the total difference in
heads and tails across all predecessors—including herself—and announces this estimate. A Bayesian
Nash equilibrium strategy is to add one’s own 100-trial sample to her immediate predecessors’ es-
timate.22 However, they find a weak tendency towards redundancy neglect: subjects fail to fully
understand that the most recent predecessor’s behavior incorporates the information of earlier prede-
cessors. They also show severe redundancy neglect in a treatment where four independent players in
each round are asked to derive these sums.

3 Belief Dynamics, Long-Run Beliefs, and Abandoned States

This section characterizes belief dynamics under naive inference and presents some general implica-
tions for long-run learning. In particular, we characterize the possible limit beliefs that society may
come to hold, revealing that there may exist states that people always come to disbelieve, even when
they are true. When such an “abandoned state” occurs, society unlearns: Generation 2 is very likely
to learn the true state, yet later generations become convinced of something false. Furthermore, we
show that our classification of “abandoned states” is robust in the sense that these states will not be
assigned high probability in the long run even in the canonical environment where only a single agent
takes an action in each period.

3.1 Characterization of Naive Belief Dynamics

We first formalize the intuition that, if generations grow large, then with arbitrarily high probability
the public belief will transition from one generation to the next in a deterministic manner. Fix an
arbitrarily small ε > 0. We then define a deterministic belief-transition function φ : Ω → Ω as

interferes with inference.
21Enke and Zimmermann (2017) also find evidence that people fail to account for redundancies in information.
22In fact, determining the optimal action in this setting does not even require proper use of Bayes’ Rule: the Bayesian

Nash equilibrium corresponds to the unique Iterated-Weak-Dominance (IWD) outcome, and in this IWD strategy profile
no players need to apply Bayes’ Rule.
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follows: if all agents in Generation t believe the probability of state ω is at least 1− ε, then all agents
in Generation t+ 1 believe the probability of state φ(ω) is at least 1− ε. In our first result below, we
(i) show that there exists such a transition function that describes the evolution of naive beliefs when
ε is sufficiently small; and (ii) derive its functional form.23

Under naive inference, the transition function φ is characterized by the solution to a particular
distance-minimization problem between the autarkic and aggregate-signal distributions. Namely, if
Generation t is confident that the state is ω̂t, then Generation t + 1 grows confident in the state
ω̂t+1 whose autarkic distribution, Pω̂t+1 , is closest to the observed distribution, Tω̂t , in terms of cross
entropy.

Definition 4. The cross-entropy distance between the observed distribution T ∈ ∆M and the pre-

dicted distribution P ∈ ∆M is defined as

H(T,P) = −
M−1∑
m=0

T(m) logP(m).24 (2)

To avoid trivial complications, we assume that no aggregated-signal distribution lies perfectly
“between” two distinct autarkic distributions.

Assumption 3. For any ω ∈ Ω, H(Tω,Pω′) = H(Tω,Pω′′) if and only if ω′ = ω′′.

Assumption 3 ensures that our transition function φ is single valued when ε is sufficiently small, and,
given that it fails only for knife-edge cases, it is relatively innocuous. We can now characterize φ as
follows.

Lemma 1. For ε > 0 sufficiently small and N sufficiently large, beliefs evolve according to a well-

defined belief-transition function φ : Ω→ Ω such that if all agents in Generation t place probability

exceeding 1−ε on some state ω̂t ∈ Ω, then all agents in Generation t+1 place probability exceeding

1− ε on state φ(ω̂t) ∈ Ω, where φ is defined by

φ(ω̂t) = argmin
ω∈Ω

H(Tω̂t ,Pω).

To provide intuition, suppose all players in Generation t think ω̂t ∈ Ω is true with probability exceed-
ing 1− ε. For ε sufficiently small, these players choose actions as if ω̂t were true. Thus, at converges

23The function φ depends on ε. However, since all of our results will take ε as fixed, we will not explicitly denote this
dependence for the sake of notational ease.

24We refer to the cross-entropy colloquially as a distance even though it is not symmetric and thus not a proper
metric. The well-known Kullback-Leibler divergence (or “relative entropy”) of P from T in terms of cross entropy is
simplyH(T,P)−H(T,T). These measures are common in both information theory (e.g., Cover and Thomas, 2006) and
the literature on learning with misspecified models (e.g., Berk, 1966; Schwartzstein, 2014; Esponda and Pouzo, 2016;
Bohren and Hauser, 2021).
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to Tω̂t as N →∞. Since the informativeness of at swamps that of any individual private signal as N
grows large (Assumption 2.3), players in Generation t + 1 will therefore put probability exceeding
1− ε on the state most likely to yield at ≈ Tω̂t through autarkic behavior.

Lemma 1 implies that beliefs evolve deterministically according to φ from Generation 2 onward
so long as the required initial condition is met; that is, so long as all agents in Generation 2 assign
probability exceeding 1− ε to some state. We can further show that this initial condition will be met
with arbitrarily high probability: by the Strong Law of Large Numbers, a1 → Pω a.s. as N → ∞,
and, since Pω is unique (Assumption 2.2), observing a1 ≈ Pω essentially reveals the state to Genera-
tion 2. An argument analogous to the proof of Lemma 1 then implies that all agents in Generation 2

believe the probability of ω is at least 1− ε when N is sufficiently large. Thus, in light of Lemma 1,
there is an arbitrarily high probability that public beliefs evolve deterministically from Generation 2

onward when N is sufficiently large.
For the remainder of the paper, we implicitly fix an arbitrarily small ε and consider a sufficiently

large N such that the transition function in Lemma 1 applies. We therefore focus on the high-
probability event in which public beliefs evolve according to φ. As such, let ω̂t denote the state
that Generation t assigns high probability (i.e., above 1 − ε). We will call ω̂t the “public belief”
in Generation t. It is worth noting that this terminology is slightly imprecise: the public belief in
Generation t is not degenerate on ω̂t, but it does put arbitrarily high weight on ω̂t. This is what we
mean when we say Generation t “grows confident” in ω̂t.25

To summarize, we study the process of public beliefs, 〈ω̂t〉, that is (i) defined by ω̂t+1 = φ(ω̂t),
and (ii) starts from the initial condition in which Generation 2 puts arbitrarily high probability on the
true state; that is, ω̂2 = ω.

Naivete can lead society astray beginning in Generation 3: since they neglect that Generation
2 learned from Generation 1, Generation 3 treats a2 as if it reflects autarkic play when in fact a2

reflects actions taken with near perfect knowledge of ω (i.e., a2 ≈ Tω). As previewed in Section 2,
Generation 3 will then (i) infer what distribution of signals Generation 2 must have received in order
to take actions a2 under autarkic play, and (ii) come to believe in the state ω̂3 ∈ Ω most likely to
generate those signals.26

It is noteworthy, albeit immediate, that naivete gives rise to “unlearning” across generations. Al-

25Since πt will assign an arbitrarily high weight to ω̂t as N → ∞, ω̂t is sufficient for πt in terms of predicting the
behavior of Generation t.

26Agents in our model may observe a distribution of predecessors’ actions that they think is extremely unlikely (e.g.,
the observed behavior a2 does not resemble the autarkic distribution in any state). In general, there need not exist ω̂
such that Pω̂ = Tω . The updating process described by φ implicitly handles any such discrepancy between observations
and predictions by attributing it to sampling variation. Furthermore, we focus on large yet finite generations rather than
a continuum (e.g., Banerjee and Fudenberg, 2004) to ensure that Bayesian updating is well defined. Under our finite
approach, the probability of any observation within a naive agent’s model may go to zero in N but remains positive short
of the limit.
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though Generation 2 effectively learns the state, Generation 3 maintains this knowledge if and only if
φ(ω) = ω. If φ(ω) 6= ω, then society “unlearns” ω between Generations 2 and 3 and grows confident
in something false. Furthermore, when unlearning occurs, public beliefs will never settle on the truth:
even if public beliefs put high probability on ω in some later period, they will again move away. As
detailed in the next section, we will classify such a state as “abandoned”.

3.2 Long-Run Beliefs

The limiting behavior of public beliefs will take one of two forms. We say that long-run beliefs are
stationary if 〈ω̂t〉 converges to a fixed state. In this case, successive generations eventually believe in
the same (but potentially incorrect) state. Otherwise, we say that long-run beliefs are cyclic. In this
case, 〈ω̂t〉 becomes periodic, continually cycling over a fixed subset of states. While we primarily
focus on environments with stationary long-run beliefs, we briefly discuss the case of cyclic beliefs
below (Section 3.4 and Appendix A).

The fact that society may fail to settle on the truth raises two questions focal to this paper. First,
as a function of the true state, what does a naive society in fact come to believe? Second, are there
“abandoned states” that society continually disbelieves, regardless of what is true?

To address these questions, we now examine which beliefs are reliably passed from one generation
to the next. Consider a state ω̂ that society will continue to believe whenever the preceding generation
assigns it high probability. Let Ω∗ ⊆ Ω denote the set of all such states. More precisely, ω̂ ∈ Ω∗ if
and only if there exists ω ∈ Ω such that 〈ω̂t〉 converges to ω̂ given the initial condition ω̂2 = ω. Thus,
the only states in which society can remain certain are the fixed points of φ. Although this result
follows directly from Lemma 1, it plays a central role in our analysis and we therefore state it here
for reference.

Proposition 1. If 〈ω̂t〉 converges to a stationary limit belief ω̂ ∈ Ω, then ω̂ ∈ {ω ∈ Ω | φ(ω) = ω}.
Thus, Ω∗ = {ω ∈ Ω | φ(ω) = ω}.

Proposition 1 highlights how naivete restricts the set of states on which public beliefs may settle.
The set Ω∗ consists solely of those states ω such that the predicted behavior of privately informed
agents in state ω most closely—out of all possible states—resembles the behavior of agents certain
of ω. If ω /∈ Ω∗, we call ω abandoned: public beliefs will never settle on such a state. Whenever
Ω∗ ( Ω, there will exist abandoned states that people continually disbelieve even when they are true.
Our applications below reveal several natural scenarios where abandoned states emerge.

Abandoned states do not emerge, however, in the canonical two-state environment with common
preferences studied by ER. To illustrate, suppose Ω = {0, 1}, A = {A0, A1}, and suppose the utility
function for all players is u(Am|ω) = 1{m = ω}—they earn a payoff equal to one when their
action matches the state and zero otherwise. If the state is ω = 0, then all players in Generation 2

15



effectively learn this and take action A0. What will a naive Generation 3 infer? So long as signals
are informative, then the likelihood of action A0 in autarky is higher in state 0 than it is in state 1;
that is, P0(0) > P1(0). Hence, P0 better fits the observed behavior of Generation 2 than P1 does, and
Lemma 1 implies ω̂3 = 0. Thus, φ(0) = 0. An analogous argument yields φ(1) = 1. Therefore,
in the canonical two-state environment, Ω∗ is identical to Ω. Accordingly, naive beliefs can settle
on either of the two states. ER show that a naive society may settle on the incorrect state when
earlier signals are misleading. However, the likelihood of such mislearning vanishes in our setting
with large generations: the likelihood that the set of initial signals is collectively misleading goes to
zero in N . In contrast, we will show that there are many environments where some states are never
supported by naive beliefs, even when N grows large. Put differently, the type of mislearning that
arises in ER’s setting happens only when early signals are misleading, yet in alternative environments
there can exist states that lead to mislearning with probability arbitrarily close to one regardless of
whether early signals are misleading or not. We refer to this latter form of mislearning as structural

mislearning: whether society mislearns is preordained by the environment itself and does not depend
on the happenstance of early signals.

A simple demonstration of this result arises when we extend the example above so that there are
more states than actions. In this case, there necessarily exist predetermined states that society will
adamantly disbelieve even when they are true.

Proposition 2. Suppose players have common preferences. If |Ω| > |A|, then there exists at least

one state ω ∈ Ω such that when ω is true, ω̂t 6= ω for all t > 2.

Intuitively, the behavior of autarkic agents in Generation 1 reveals the commonly-preferred action,
and Generation 2 then herds on this action. However, because there is a unique state that best predicts
such a herd in autarky, there are at most M ≡ |A| states that society can come to believe—one for
each of the M possible herd actions. Thus, if |Ω| > |A|, then there necessarily exist states that a
naive society will deterministically deem false no matter what is true.

It is worth noting that canonical models of social learning do not typically examine settings with
more states than actions. For the questions these models address, it is typically sufficient to define
coarse states that comprise all events in which a particular action is optimal. There are, however,
economically important settings with more states than actions; e.g., settings where society aims to
learn the quality difference between two goods. If queuing costs were introduced or if prices were
to change, then this quality difference would become crucial for deciding whether the option with
superior quality is still worthwhile. In our setting with large generations, Generation 2 may perfectly
infer the magnitude of this quality differential. Despite this, Proposition 2 implies that Generation 3

will necessarily assign negligible probability to some potential values of the quality differential even

16



when they are indeed true.27

3.3 Robustness of Abandoned States

Proposition 1 is straightforward in our large-generation setting with deterministic belief dynamics,
but it is particularly important because the result extends to more familiar settings where it is less ob-
vious. Notably, a naive society will never grow confident in any of the states deemed “abanonded”—
i.e., those outside of Ω∗—irrespective of the observation structure so long as the number of prede-
cessors that each agent observes grows large in t. Although our large-generation setting makes the
logic of abandoned states tractable and transparent, the characterization of these states described by
Lemma 1 and Proposition 1 is indeed more general. This robustness is critical for porting the insights
derived in our simplified framework to more familiar settings.

More explicitly, we now show that Proposition 1 extends to the canonical single-file setting com-
monly assumed in the literature on social learning (e.g.,Bikhchandani et al., 1992; Smith and Sørensen,
2000; Eyster and Rabin, 2010; Bohren and Hauser, 2021). Define the canonical single-file environ-

ment as one similar to ours, but with the following differences. First, a single player acts in each
period t = 1, 2, . . . ; let xt and θt define the choice and type of this player, respectively. Second, an
agent’s type, θt, is i.i.d. across periods. Third, each agent t observes the complete history of actions.
The “public belief” πt ∈ ∆(Ω) is thus a player’s belief after observing (x1, . . . , xt−1). Finally, we
drop Assumption 2.3 that bounds the informativeness of signals.

The next proposition shows that the sequence of public beliefs never converges to certainty on any
state ω /∈ Ω∗ no matter what is true, where Ω∗ is defined by Lemma 1 and Proposition 1.

Proposition 3. Consider the canonical single-file environment, and consider any realized state ω ∈
Ω. If ωk /∈ Ω∗, then Pr(πt → δ(ωk)|ω) = 0.

Intuitively, if beliefs eventually concentrate in the neighborhood of ω̂, then a Player t late in the
sequence will observe a distribution of behavior among her predecessors that resembles Tω̂. Because
a naive observer thinks each predecessor acts independently, the observed order of actions does
not influence her inference—only the aggregate distribution of behavior matters. Following the
same logic as Lemma 1, the state that maximizes the “autarkic” likelihood of this distribution is
ω̂ = arg minω∈Ω H(Tω̂,Pω) = φ(ω̂). Thus, in order for Player t to remain confident in ω̂, it must be
that ω̂ = φ(ω̂). This implies that the only states on which public beliefs may settle in this alternative
structure are exactly those in Ω∗ described in Proposition 1. As such, our results characterizing when
a naive society fails to learn the truth (in the long-run) are robust to alternative structures.28

27Even in settings where rational agents cannot perfectly discern the payoff difference between two options, they
would not assign negligible probability to plausible values—they would instead remain uncertain. In contrast, naive
agents systematically put (nearly) zero probability on a predetermined set of states.

28The intuition above continues to hold under more general assumptions on the set of predecessors that each player
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Although our result that beliefs never settle on states outside Ω∗ is robust to relaxing our large-
generation assumption, this assumption is crucial for pin pointing which state in Ω∗ society will
come to believe. In the canonical single-file environment, limit beliefs depend on the sample path of
signals. Hence, the singe-file setting only broadens the scope for mislearning. Namely, it introduces
the chance that society mislearns when the true state lies in Ω∗; this almost never happens in our
large-generation setting.29

3.4 Cyclic Beliefs

Before turning to applications that exhibit abandoned states, we briefly discuss the possibility of
cyclic beliefs for the sake of completeness.

In settings where public beliefs converge to a fixed state, Ω∗ is sufficient to identify the states that
society will necessarily dismiss: all states outside Ω∗ will receive negligible weight in the long-run.
However, in settings with cyclic beliefs, Ω∗ no longer provides a sufficient answer to this question.
The process 〈ω̂t〉 may become periodic and continually cycle over a subset of states. Although these
states lie outside Ω∗, society will frequently grows confident in them. Hence, to identify the states
that society assigns negligible weight in the long run, we must additionally distinguish those states
that society may assign high probability infinitely often; we denote the set of such states by Ω∗∗.30

Analogous to Proposition 1, public beliefs may periodically put high probability on a state only if it
is a fixed point of a composition of φ; that is, Ω∗∗ = {ω ∈ Ω : ∃ L ≥ 1 such that φL(ω) = ω}.
Any state ω outside Ω∗∗ satisfies a strengthened notion of “abandoned”: not only do beliefs fail to
converge on ω, but all generations eventually assign it negligible probability even when ω is the true
state. Appendix A provides more details and an example where Ω∗ is empty yet Ω∗∗ = Ω—public
beliefs continually cycle over all possible states regardless of what is true.

Despite the caveat above, the applications we consider beyond this section all deliver stationary
long-run beliefs. Thus, focusing on Ω∗ will indeed be sufficient to determine which states are perma-
nently disbelieved.

Before turning to those applications, it is worth considering whether there is a limit to how often
naivete can lead to permanently false beliefs. Namely, can there exist environments where, for every
realization of the state, each generation in the long run grows confident in something false? The
answer is no: in every environment, there exists some state that will induce correct learning among

observes. For instance, suppose N players act in each round, and let O(n,t) denote the set of all the predecessors that
Player (n, t) observes. Proposition 3 extends if, for all n = 1, . . . , N , |On,t| is increasing in t and limt |O(n,t)| → ∞.

29In the single-file environment, it is possible that society can grow certain of any ω ∈ Ω∗ regardless of the true state.
The logic follows directly from Eyster and Rabin’s (2010) Proposition 4: if ω ∈ Ω∗, then there exists a sample path of
signals realized with positive probability such that beliefs settle on ω.

30Formally, ω̂ ∈ Ω∗∗ if and only if there exists ω ∈ Ω such that, given the initial condition ω̂2 = ω, there exists no
t̄ ∈ N such that ω̂t 6= ω̂ for all t > t̄.
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some generations in the long run.

Proposition 4. There exists a state ω ∈ Ω such that when ω occurs, society places arbitrarily high

probability on the truth (i.e., ω̂t = ω) infinitely often.

If Ω∗ is non-empty, then all generations correctly learn ω whenever ω ∈ Ω∗. But even when Ω∗

is empty, there still must exist some ω such that, when ω occurs, long-generations will periodically
come to believe ω. Although there is some limit to structural mislearning, our applications illuminate
natural environments in which a majority of states will lead a naive society to permanently false
conclusions.

3.5 Example: Long-Run Beliefs that are Independent of the State

This section provides an initial example of abandoned states. The application here highlights that
naivete can cause public beliefs to converge on a single preordained state no matter what is true.
That is, naive inference funnels beliefs toward Ω∗, which happens to be a singleton.

Consider two types of agents with opposing preferences. To fix ideas, imagine farmers deciding
whether use a well-known seed type (A0) or adopt a new hybrid type (A1). Option A0 yields a payoff
normalized to zero for all farmers. The payoff from A1, however, is sensitive to a farmer’s soil type
and is positive only if it matches well with one’s plot.31 Suppose there are two types of soil, high
salinity (θ = H) and low (θ = L). Each farmer knows both her own soil type and that a fraction
λ > 1

2
of farmers are high types. Initially, it is unknown whether seed A1 is compatible with high

salinity (ω = H) or low salinity (ω = L). A farmer with compatible soil earns v > 0 by planting A1,
but one with incompatible soil earns −v. Thus, option A1 is optimal for Farmer (n, t) if and only if
θ(n,t) = ω. Farmers in village t learn about ω by observing choices in the adjacent village t− 1.

We consider a signal structure with the natural property that that, no matter the state, adoption
of the new seed increases as social learning takes place. In particular, suppose a known fraction
ψ ∈ (0, 1) of farmers receive informative private signals about ω (e.g., from past experience with
seed A1). The remaining farmers have uninformative signals. Each informed farmer receives an i.i.d.
signal s ∈ {H,L} with mass function f(s = ω|ω) = ρ ∈ (1

2
, 1); her signal matches the true state

with chance ρ ∈ (1
2
, 1).

To determine what naive farmers come to believe, we must compare Pω and Tω across states.
From the setup above, the autarkic distributions are PL(1) = ψ[(1 − λ)ρ + λ(1 − ρ)] and PH(1) =

ψ[λρ+(1−λ)(1−ρ)]. Among a generation certain of ω, all those with type θ(n,t) = ω chooseA1; this
implies TL(1) = 1−λ and TH(1) = λ. Hence, if sufficiently few farmers have private information—

31This example is inspired by Munshi (2004) and Foster and Rosenzweig (1995), who study social learning among
Indian farmers trying to deduce the optimal inputs for new “high-yield” strains of rice and wheat. Munshi (2004) notes
that rice is quite sensitive to soil characteristics, but wheat is not.
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that is, if ψ is not too large—then social learning always leads to higher adoption rates relative to
autarky: those who are initially uninformed might adopt based on information gleaned from their
neighbors.32 Naive observers, however, misattribute this learning-based increase in adoption. When a
large share adopts, they conclude that the new seed must be optimal for the majority type. Essentially,
people may mistake “confident” behavior in the low state for autarkic behavior in the high state.

To illustrate, suppose λ = 0.7, ρ = 0.8, ψ = 0.5, and ω = L, so only the less-common low
types should adopt. In the first period, the adoption rate is PL(1) = 19%, which reveals ω = L to
Generation 2. Thus in period 2, all of those with type θ(n,t) = L chooseA1, yielding an. adoption rate
of TL(1) = 30%. A naive Generation 3, however, expects to see either the autarkic rate PL(1) = 19%

(if the state L) or PH(1) = 31% (if the state H). Hence, they come to believe in whichever state is
most likely to yield 30% as a result of sampling variation. Since 30% is “closer” (in terms of cross
entropy) to 31% than it is to 19%, Generation 3 wrongly becomes convinced that ω = H .33

In fact, ω̂3 = H whenever ψ is not too large relative to λ and ρ. In such cases, all high types—the
majority of farmers—adopt A1 in round 3. Since this rate is higher than predicted in either state, all
subsequent farmers will continue to believe ω = H . Mislearning results from people intuitively (but
wrongly) reasoning that high adoption rates indicate that the new technology is best for the majority
type. The following proposition summarizes these results.

Proposition 5. Consider the technology-adoption example above where two types of agents have

opposing preferences conditional on the state.

1. Suppose adoption is optimal only for the majority type (i.e., ω = H). Then public beliefs settle

on the truth: ω̂t = H for all t ≥ 2.

2. Suppose adoption is optimal only for the minority type (i.e., ω = L). There exists a threshold

value ψ̄ ∈ (0, 1) such that if the fraction of informed agents falls below ψ̄, then public beliefs

wrongly settle on the false belief that adoption is optimal only for the majority type. That is,

ψ < ψ̄ implies ω̂t = H for all t > 2. Additionally, ψ̄ is continuously decreasing in both λ and

ρ

In summary, if ψ < ψ̄, then Ω∗ is a singleton: Ω∗ = {H}.

4 Extreme Beliefs

This section presents a simple yet stark implication of naive learning in settings where individuals
with common preferences choose among options with independent payoffs. Namely, people grow

32The relevant condition on ψ is ψ < (1− λ)/[(1− λ)ρ+ λ(1− ρ)]. This threshold monotonically increases to 1 as
the precision of signals, ρ, increases from .5 to 1.

33This “distance” calculation follows from Equation 2: H(TL,PL) = −0.3 log(0.19) − 0.7 log(0.81) ≈ 0.6457 >
0.6111 ≈ H(TL,PH) = −0.3 log(0.31)− 0.7 log(0.69).
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certain that one option yields its highest possible payoff while all others yield the lowest possible.
Under naive inference, people think a herd on option Am results from N independent signals indicat-
ing Am is better than all of its alternatives. We show that, under a natural signal structure in which an
autarkic agent is more likely to try an option when its relative payoff is higher, this misinterpretation
of the herd convinces onlookers that the payoff difference between Am and each of the other options
takes on its most extreme value.

Actions and States. Suppose players have common preferences and each optionAm ∈ {A0, ..., AM−1}
yields a payoff u(Am|ω) = qm. We refer to qm as the “quality” of option m. The payoff-relevant
state is the “quality vector” ω = (q0, ..., qM−1). Each qm is drawn from a support Qm with |Qm| ≥ 2,
and is drawn independently from the quality of any other option, qj . For instance, imagine consumers
learning about the relative quality of two products from independent firms, or investors learning about
the returns to assets in unrelated sectors. Thus, any quality profile ω ∈ ×M−1

m=0Q
m is a feasible state.

Signals. We consider signal structures that satisfy the familiar Monotone Likelihood Ratio Prop-
erty (MLRP). Building on our setup from Section 2, we further assume that s = (s0, . . . , sM−1) ∈
RM , where each sm depends on qm alone and is independent of all other qj; that is, news about
qm provides no information about qj . Conditional on qm, let Fm(·|qm) and fm(·|qm) denote the
marginal c.d.f. and associated density (or mass) function of sm, respectively, and suppose they obey
the following property:

Definition 5. Fm satisfies the Monotone Likelihood Ratio Property (MLRP) if for every q > q′,

fm(s|q)/fm(s|q′) is strictly increasing in s.

MLRP means that higher signals unambiguously indicate higher expected quality. In this setting,
MLRP naturally implies that the share of players who choose Am in autarky strictly increases as
qm increases. This suggests that naive social learners will conflate high demand with high quality.
Indeed, our next proposition shows that they will come to believe in an “extreme state”:

Definition 6. Extreme state m, denoted by ωme , is the state in which qm = maxQm and qj = minQj

for all j 6= m.

Proposition 6. Suppose arg maxj(q
1, . . . , qM) is unique and equal tom. If signals about each option

(i) satisfy MLRP and (ii) are independent of signals about any other option, then ω̂t = ωme for all

t > 2. That is, public beliefs settle on the extreme state in which option m yields its highest possible

payoff and all other options yield their lowest possible payoff. Hence, Ω∗ is to equal the set of extreme

states and all other states are abandoned.

To illustrate the logic, suppose q0 = max(q0, ..., qM−1). Because Generation 2 infers that A0 is
optimal, they unanimously choose A0. Generation 3 comes to believe in the state most likely to
induce a herd on A0 under autarkic play. Intuitively, this state must maximize the chance of good
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news about A0, but minimize the chance of good news about any other option. Under MLRP, this
happens in state ω0

e . As such, Generation 3 infers ω̂3 = ω0
e and again herds on A0, which implies that

ω0
e is a steady state: ω̂t = ω0

e for all t > 2. In essence, naive observers mistake herds caused by social
learning as an overly optimistic signal about the chosen action’s relative quality.

Proposition 6 clearly demonstrates how naivete restricts the hypotheses society may come to be-
lieve. No matter which of the

∏M−1
m=0 |Qm| possible states is realized, beliefs eventually settle on one

of only M extreme states.34 This setting also exemplifies the prediction of Proposition 2: since there
are more states than actions, some states are surely abandoned.

Proposition 6 implies that naive learners tend to exaggerate the quality difference between options.
Imagine that firm A’s product has only slightly higher quality than its competitor, B. When droves
of consumers choose A over B due to social learning, the naive onlooker infers not only that A is
better than B, but that it is much better. Within a naive agent’s model, A’s predicted market share
is strictly increasing in its quality advantage over B, and thus they attribute a large market share
to a large advantage. However, this naive logic neglects the fact that, due to initial social learning,
predecessors would choose A no matter how small of a quality advantage it has.35 Such beliefs
may be costly. For instance, if queuing costs arise, then extreme beliefs may generate inefficiently
high congestion: since naive observes exaggerate the quality difference between the best option and
all others, they are less willing—relative to rational observers—to switch to the next-best option.
Consumers would be willing to wait in long queues or pay relatively high prices for firm A even
when B being nearly as good. The following sections explicitly show two additional ways that
extreme beliefs lead to sub-optimal actions.

5 Large Choice Sets can Trigger Excessive Adoption

This section shows how the formation of “extreme” beliefs can induce society to over-adopt a new
technology. We consider a setting where people with heterogeneous preferences can choose from
several unproven technologies, and we show that naivete can drive all people to adopt one of them
even in states where only a minority should. In particular, we emphasize how the number of available
options determines whether such over-adoption will occur: with more options to evaluate, it becomes
more likely that society will wrongly conclude that one of them is worthwhile for all types.

34The canonical setting assumed in ER precludes exaggerated perceptions of quality differences because the only
states they consider are “extreme” to begin with. Only when we first allow non-extreme states to arise with positive
probability do we see how naive inference blocks society from learning these states.

35In reality, we of course do not expect all consumers to patronize the higher-quality firm—pricing, heterogeneous
tastes, and various frictions would prevent this. The point of this application is to demonstrate a more general, directional
prediction. Namely, social learning will typically cause the better firm to capture more of the market than if consumers
were to make decisions in autarky. Yet, since naive learners neglect the effect of social learning on market shares, they
wrongly attribute these larger-than-expected shares to the firm’s quality.
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We first develop intuition for this result and then formalize it below. Imagine a community learning
about the efficacy of two costly medical practices, A and B. Patients can either choose one of these
remedies or abstain from treatment altogether. The payoff from abstaining varies across individuals—
some have more severe cases than others. In truth, suppose that both remedies have low efficacy, and
A is only marginally better than B. As society discovers this, those with mild cases abstain from
treatment while those with dire cases adopt A. This “split” pattern of behavior may lead naive
followers astray, as it sends two conflicting signals. The first is what we will call the “abstention
signal”: the fact that many abstain reflects negatively on both treatments since naive observers expect
many to abstain only when both are ineffective. At the same time, the observed behavior also reflects
positively on treatment A. We will call this force the “consensus signal”: the fact that those who do
choose a treatment unanimously select optionA overB reflects positively onA since naive observers
expect the demand forA to dwarf that forB only whenA is significantly better. Society will wrongly
conclude that A is highly effective whenever the consensus signal sends a stronger message than the
abstention signal.

This happens, for instance, when the number of alternative treatments is large. With more options
available, it becomes increasingly surprising that autarkic actors would identically choose A. In turn,
this consensus behavior is increasingly convincing to naive onlookers that their predecessors received
strongly optimistic signals about A, which indicates that A is truly beneficial.

Actions and States. For the sake of clarity, we frame our general setup in terms of the medical
example above. We build on that example by considering an arbitrary number of potential treatments
in order to highlight how this number influences learning. Each patient can either try one of M
unproven treatments, {A1, . . . , AM}, or choose the outside option,A0, which represents no treatment.
Each treatment m yields a payoff qm ∈ {qm, 0} for all patients. We call treatment m “effective” if
qm = 0; otherwise it yields qm < 0, meaning it is only partially effective or harmful. To avoid
trivialities arising from indifference (Assumption 3), let qm 6= qj for all m 6= j, and, without loss of
generality, q1 = maxm{qm}Mm=1. That is, A1 is the best option whenever none are fully effective.

The payoff of the outside option, A0, depends on a patient’s type, θ, and is denoted by q0
θ . Suppose

there are two types: type θ = H represents a “dire” patient who highly values treatment, and type
θ = L represents a patient with a mild case and hence a low demand for treatment. We assume that
the outside option of a high-valuation type (θ = H) is bleak enough that she always picks some
treatment over abstaining; i.e., q0

H < q1. In contrast, a low-valuation type (θ = L) selects a treatment
only when she is sufficiently confident it will work and otherwise abstains; i.e., q0

L ∈ (q1, 0). Let
λ ∈ (0, 1) denote the fraction of high-valuation (i.e., “dire”) patients.36

Signals. The signal structure over the uncertain options matches Section 4: patients receive condi-

36Our results in this section hold regardless of whether a player’s type is publicly observable or not, and it easily
extends with additional types.
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tionally independent signals sm ∼ Fm(·|qm) about each treatment, where each Fm satisfies MLRP
with respect to qm (Definition 5). Additionally, suppose that, for each option m = 0, . . . ,M , there
exist signal realizations (occurring with positive probability) that lead a low-value patient to select
m in autarky. Thus, a low-value patient (θ = L) refuses treatment in autarky whenever she receives
sufficiently pessimistic signals about all the treatments, while a high-value patient (θ = H) always
chooses some treatment.

We analyze public beliefs in the state where all treatments are ineffective and thus low-valuation
types (θ = L) should abstain. The next proposition shows that having more treatments to choose
from makes it more likely that society will mislearn the state, causing people to wrongly believe
some treatment is effective for all. Let ω0 denote the state in which no treatment is effective, and
let ωm denote that in which only treatment m is effective. To ensure that increasing the number
of options does not mechanically increase the likelihood of an effective treatment, we fix the prior
probability of ω0 at χ ∈ (0, 1), which is independent of M .

Proposition 7. Suppose the state is ω0. There exists a finite value M ≥ 2 such that:

1. Public beliefs settle on the true state if and only if the number of uncertain options, M , is less

than M .

2. If M ≥ M , then ω̂t = ω1 for all t > 2, and society wrongly believes option A1 is optimal for

all types.

For intuition, consider inference and behavior among Generations 2 and 3. Since Generation
2 correctly infers the state, all patients in Generation 2 choose treatment m whenever it is truly
effective (i.e., in state ωm). This herd clearly indicates to future generations that Am is effective
and society correctly learns. However, when no treatment works (i.e., in state ω0), Generation 2

sends a more opaque message to followers: low-value types abstain while high-value types select the
least bad treatment, A1. Naive followers who observe this split behavior confront the conflicting
“abstention” and “consensus” signals introduced in the opening example. The consensus signal
suggests that option A1 is effective, while the abstention signal tempers this optimism. Thus, when
the consensus signal is relatively strong, Generation 3 and all future generations will wrongly infer
that A1 is optimal for all.37

One feature of the environment that determines the strength of the consensus signal is the size of
the choice set—it becomes relatively stronger as the number of options, M , grows. Increasing the

37Perhaps the simplest case in which the consensus signal dominates is when the abstention signal provides no in-
formation at all. This happens whenever there exist no private signals strong enough to entice low-valuation patients to
experiment with risky treatments in autarky. Thus, naive observes expect all low types to abstain irrespective of their
information. Generation 3 consequently thinks that only the actions of dire types reveal information and thus update their
beliefs entirely from the consensus signal.
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set of options makes the consensus behavior more surprising: with more options to pick from, it
becomes less likely that autarkistic choices would coincide unless A1 were truly effective. Further-
more, Proposition 7 holds for any λ. Thus, no matter how few dire patients there are, a sufficiently
large number of options will allow this small minority to greatly sway public beliefs.38

More specifically, Lemma 1 implies that the conflicting behavior observed by Generation 3—dire
types select A1 while all others abstain—is more likely in state ω1 than ω0 if and only if(

Pω1(1)

Pω0(1)

)
︸ ︷︷ ︸
Consensus signal

λ

>

(
Pω0(0)

Pω1(0)

)
︸ ︷︷ ︸
Abstention signal

1−λ

. (3)

The left-hand side of (3) represents the signal in favor of state ω1 due to the consensus among dire
patients, and the right-hand side represents the signal in favor of ω0 due to abstention. The strength
of the “consensus signal”, Pω1(1)/Pω0(1), is increasing in M . To see why, first note that a patient
chooses A1 in autarky only when her private signal about that treatment, s1, is sufficiently high
relative to her private signals about the other M −1 options. That is, s1 must satisfy M −1 threshold
conditions, where each depends on the realized signal about an alternative treatment, m > 1. Now
consider how the likelihood that these conditions are met—and hence that A1 is chosen—differs
between the state where no treatment is effective, ω0, and the one where A1 is uniquely effective,
ω1. The private signal distributions for options m = 2, . . . ,M are identical in each of these states,
but the distribution of s1 in state ω1 first-order stochastically dominates that in state ω0. Hence, each
of the M − 1 threshold conditions on s1 is more likely to hold in state ω1 than in state ω0. In this
sense, moving from ω0 to ω1 has an “M − 1 fold” effect toward increasing the likelihood that an
autarkic agent chooses A1 over any other treatment. As a result, increasing M makes the “consensus
signal” more indicative of ω1 relative to ω0. On the other hand, M has no effect on the relative
informativeness of the “abstention signal”. To see why, note that a low type chooses A0 only if each
of her M signals is low. Out of these M conditions, only one—the one about A1—is less likely
satisfied in state ω1 relative to ω0. Thus, the likelihood of observing no treatment in ω1 relative to ω0

is independent of M .
Summarizing, the informativeness of abstention behavior is independent of M , but the counter-

vailing informativeness of the consensus behavior is increasing in M : a herd on one of the options
becomes more surprising when there are more alternatives to choose from. Consequently, for any
signal distributions, there exists an M large enough such that this consensus signal dominates in-
ference and society wrongly concludes that A1 is optimal for all types. Since it appears as if those

38The population share of dire patients, λ, is another feature of the environment that determines the strength of the
consensus signal—the larger is this population, the more surprising it becomes that they congregate on an identical
treatment. The threshold M identified in Proposition 7 is therefore decreasing in λ: fewer options are needed to trigger
an unwarranted herd when dire patients are more prevalent.
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adopting the new technology have precise private information in favor of A1, their consensus behav-
ior lures the rest of society to imitate them. Thus, even a small minority of individuals with distinct
preferences can lead society astray.39,40 Interestingly, this mistake never happens when there is only
one uncertain option available: naive observers expect all dire types to choose the lone treatment no
matter the state, so they appropriately infer nothing from their actions. It is the availability of many
viable options that leads naive observers to over-infer from consensus behavior.

6 Extremism in Investment Decisions

While previous applications show how extreme beliefs can cause some types to make subpotimal
decisions, this section considers a portfolio-choice problem where naive learning will necessarily
lead all players to make harmful mistakes. In particular, when naive investors use predecessors’
allocations to predict the returns on two investments, they will suffer from two forms of inefficiency:
(i) even when it is optimal to diversify, they eventually allocate all resources to a single asset, and
(ii) when the true returns are far from initial expectations, naive investors allocate all resources to
the worse of the two assets. Although the logic parallels previous extremism results (Section 4), this
investment setting illuminates some additional implications of naivete. First, investment dynamics
reflect forms of over-extrapolation and momentum observed in “bubble” markets, where perceptions
of an asset’s value grow more extreme over time. Second, we emphasize how the direction of these
dynamics hinge on how the true state compares to initial expectations.

Suppose there are two assets that pay off in terms of a consumption good in some final period T .41

We call one “safe” and the other “risky”. Suppose the two assets yield constant expected payoffs
across generations, but their realized payoffs in any Generation t is subject to noise. Specifically,
the safe and risky asset yield payoffs dst = 1 + ηst and drt = 1 + ω + ηrt , respectively, where the ηmt
terms represent i.i.d. mean-zero random shocks. Thus, the safe asset has an expected payoff of 1,
and the risky asset has an expected payoff of 1 +ω, where the “fundamental” ω is initially unknown.
We include aggregate shocks, ηmt , to model a scenario where rational risk-averse investors diversify

39This intuition extends beyond the specific medical example used for exposition. For instance, consider investors
who vary in risk aversion learning about the returns on various assets. More risk-averse agents are analogous to mild
patients in our medical example because they require relatively higher signals in order to invest. Thus, when investors
are evaluating a sufficiently large number of options, Proposition 7 then implies that the more risk-averse agents will be
unduly swayed to follow the strategies of those seeking high-risk positions.

40Gagnon-Bartsch (2016) predicts a similar form of costly herding in a social-learning model with agents who exag-
gerate the extent to which others share their tastes. Namely, society will wrongly adopt a single action when in fact those
with different tastes are better off choosing distinct options.

41While we focus on the limit case where T is arbitrarily large, the dynamics we describe are identical for finite T . We
consider long-term investments that do not payoff immediately to ensure that the current generation does not observe the
outcomes of the previous generation’s choices. The model alternatively applies to cases where each investor’s outcome
is realized immediately but is privately observed.
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even when ω is perfectly known, and we assume these shocks are distributed ηmt ∼ N
(
0, ρ−1

η

)
for

both m = r, s. Additionally, we assume private signals and the prior over the fundamental, ω, are
normally distributed as well: ω ∼ N(ω, ρ−1

ω ), and, conditional on ω, s(n,t) ∼ N(ω, ρ−1
s ). An investor

updates this prior over ω based on her private signal and her predecessors’ allocations (as described
below).42

Each Investor (n, t) has initial wealth W0 ∈ R and allocates a fraction x(n,t) ∈ [0, 1] to the risky
asset. For tractability, we consider investors with exponential utility u(W ) = − exp (−αW ) over
wealth, where α measures absolute risk aversion. It is well-known that this generates mean-variance
preferences over the optimal allocation (see, e.g., Grossman, 1976).43 It is then straightforward to
show that a naive Investor (n, t) with information I(n,t) chooses

x(n,t) =
1

2 + ρηV̂ar[ω|I(n,t)]

{
1 +

ρη
αW0

Ê[ω|I(n,t)]

}
, (4)

where the expectation and variance terms above represent those perceived by Investor (n, t) under
her naive autarkic model. Finally, we assume Investor (n, t)’s information set I(n,t) consists of her
private signal and the aggregate amount of wealth invested in the risky asset during the preceding
period, denoted by x̄t−1.44

Observed behavior among the first generation, x̄1, efficiently aggregates information about ω. As
we show in the proof of our next proposition, the aggregate allocation in Generation 1 is determined
by an “autarkic” demand function, DA(ω), that is strictly increasing in ω and takes interior values for
all ω ∈ R. Hence, DA is invertible and thus perfectly reveals the fundamental. Since x̄1 = DA(ω),
an onlooker in Generation 2 can invert this relationship to learn ω. Demand among Generation 2 then

42We assume the assets’ prices are fixed in order to avoid complications that arise when extending our model of naive
inference into a full equilibrium concept (see, e.g., Eyster and Rabin, 2008). While we abstract from asset pricing for
ease of exposition, we discuss in the conclusion how our results would naturally extend to settings with endogenous
prices. Namely, our prediction that traders form extreme perceptions of an asset’s value will generated inflated prices.

43Specifically, lettingW denote an investor’s final wealth, Investor (n, t) with information I(n,t) chooses an allocation
x to maximize

E[W |x, I(n,t)]−
1

2
αVar[W |x, I(n,t)],

where the expectation and variance terms are with respect to the investor’s subjective distribution of wealth conditional
on her chosen allocation.

44Note that x̄t is the expected value of x(n,t) across individuals, conditional on ω. In this setting, we are able to drop
some of our running assumptions for the sake of simplification. In particular, we consider a continuum of states and a
continuum of investors in each generation instead of an arbitrarily large, yet finite, group. We can do so because any
observed behavior x̄t−1 of Generation t − 1 is perfectly consistent with Generation t’s naive model; that is, there exists
some state ω̂t inferred by Generation t that perfectly predicts x̄t−1 in autarky. This is not typically the case in a more
general setup. Furthermore, because we consider a continuum of agents, we can also accommodate unbounded normally-
distributed signals. It is worth noting that our qualitative results in this section do not depend on these slightly modified
assumptions; we take this approach solely to leverage the simple closed-form solution for the optimal investment under
normally-distributed beliefs. Additionally, the results extend to a market where the same participants repeatedly make
investment decisions and observe the full history of demand.
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adjusts to reflect their new knowledge of ω.
Before examining how naive investors will eventually mislearn ω, we first consider the rational

benchmark. Rational demand for the risky asset will remain fixed from Generation 2 onward. Ra-
tional investors in period t > 2 understand that their predecessors know ω and appropriately imitate
them. Thus, they will allocate the optimal amount xr to the risky asset in each period beyond the first.
Furthermore, due to aggregate uncertainty, this rational choice will involve diversification—that is,
xr ∈ (0, 1)—so long as ω is not too large in magnitude.

In contrast, naive investors neglect that the aggregate behavior of the previous generation already
incorporates all the available information about ω and wrongly uses it to update their beliefs. Conse-
quently, naive beliefs and allocations evolve over time, and they do so until investors allocate either
all or nothing to the risky asset.

In particular, since naive investors think each generation acts in autarky, they wrongly think that
the autarkic demand function from above determines behavior in each period. A naive Generation t
who observes x̄t−1 thinks x̄t−1 = DA(ω). Attempting to infer ω from this relationship, they wrongly
grow certain that ω̂t = D−1

A (x̄t−1). From Equation 4, the aggregate demand for the risky asset in
period t is then

x̄t =
1

2

(
1 +

ρη
αW0

ω̂t

)
, (5)

so long as this value lies in [0, 1]. These conditions recursively define the allocation process, 〈x̄t〉.
Over time, naive inference polarizes investors’ perceptions of the payoff difference between the

two assets: beliefs about ω diverge toward positive or negative infinity, and 〈x̄t〉 consequently con-
verges to either 1 or 0.45

Proposition 8. Fix the true value of the fundamental, ω.

1. There exists a threshold value ω∗ such that if ω > ω∗, then perceptions of the fundamental, ω̂t,

and demand for the risky asset, x̄t, are both increasing in t. Otherwise, if ω < ω∗, then ω̂t and

x̄t are both decreasing in t.

2. The threshold value ω∗ is increasing in ω and is such that ω∗ < ω.

3. Demand for the risky asset, 〈x̄t〉, monotonically converges to 1 or 0. Hence, players eventually

invest in a single asset.

Whether beliefs about ω grow excessively optimistic or pessimistic depends on whether Generation
2—who learns the true value of ω—invests more or less in the risky asset than Generation 1. This

45Since we have assumed a prior on ω with full support on R, ω̂t converges to ±∞. Of course, this prediction is
unrealistic—the presence of some rational investors in the market would moderate this result. Instead, we think the more
important feature of this result is the qualitative prediction that perceptions tend to change monotonically over time. The
extreme outcomes of “infinite” perceptions and zero diversification simply help make the logic clear.
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initial revision in demand creates momentum that propagates through all future periods. To illustrate,
suppose demand for the risky asset increases from period 1 to 2 (i.e., x̄2 > x̄1). Since Generation 3

treats x̄2 as if it reflects autarkic demand, Generation 3 must infer a higher value of ω than Generation
2 did. As such, the demand for the risky asset increases yet again. This logic plays out across all
periods: each new generation observes a larger “autarkic demand” than the last, which leads them
to allocate even more to the risky asset. Likewise, if the initial revision in demand decreases from
period 1 to 2 (i.e., x̄2 < x̄1), then subsequent demand (and beliefs) decrease over time.

This inferential error is driven by investors continually using past demand as if it reflects new
information. Investors neglect that observed demand already incorporates all information in the
economy, and hence attribute any changes to new private information. When the current generation
incorporates this “new” information, the allocation moves yet again in the same direction as the initial
(rational) adjustment. Hence, naivete predicts momentum even when no new information is realized,
offering a plausible explanation for the sort of unwarranted swings in group beliefs that appear to be
a hallmark of financial markets. This qualitative prediction accords with the empirical findings of
Glaeser and Nathanson (2017), who suggest that momentum in the housing market derives, in part,
from naive inference based on past market prices. Indeed, an extension of our model that incorporates
pricing would predict momentum in prices, which in turn leads to price bubbles.46

The direction of this naivete-fueled momentum—and thus whether investors eventually allocate all
or nothing to the risky asset—depends on how the true fundamental compares to the threshold value,
ω∗, derived in Proposition 8. The value ω∗ is such that the initial change in demand for the risky asset
is positive if and only if ω > ω∗. As noted above, ω∗ is increasing in investors’ prior expectation,
ω, but lies somewhat below ω. Intuitively, demand initially increases when investors learn that ω
exceeds expectations. However, due to risk aversion, there is a range of values ω ∈ (ω∗, ω) for
which demand increases upon learning ω even though it falls short of expectations: in such cases,
the reduction in uncertainty over ω more than compensates for the risky asset’s lower-than-expected
return, causing its demand to increase.47 Furthermore, the fact that ω∗ is increasing in ω leads to
a perverse effect of high expectations: fixing the true fundamental, when initial expectations are
higher, it becomes more likely that agents will under-invest in the risky asset. Even when the true
fundamental is such that the risky asset is worthwhile, the initial change in demand will be negative

46In this investment context, the implications of naive inference seemingly run opposite those of cursedness (Eyster
and Rabin, 2005). As explored in Eyster et al. (2019), cursed traders in asset markets fail to infer from price. Investors
in our model, however, over-infer from past behavior—they revise their beliefs even when demand provides no new
information. For a recent analysis of how these biased beliefs influence equilibrium prices, see Bastianello and Fontanier
(2021).

47Interestingly, the speed at which perceptions diverge from the fundamental value is increasing in the level of risk
aversion, α. As risk aversion increases, observers expect greater conservatism among the (supposedly) autarkic investors
acting before them. Hence, observers think previous investors require stronger signals in order to allocate a majority of
their resources to the risky option. Fixing x̄t > 1/2, Generation t+ 1 thus infers a greater expected return the larger is α.
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when expectations are sufficiently high. Thus, this downward revision will create further momentum
that drives investment in the risky asset to zero.
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(b) Low Initial Expectations

Figure 1: The two figures describe investors’ long-run beliefs and allocations as a function of the
true fundamental (x-axis). The two frames consider different initial expectations: Frame (a) con-
siders high initial expectations—and thus a high cutoff value, ω∗—while Frame (b) considers low
expectations. The region highlighted in red indicates values of the fundamental that lead investors
to fully invest in the asset that yields the lower expected utility. The truly optimal allocation involves
diversification for all ω ∈ (−αW0/ρη, αW0/ρη).

Part 3 of Proposition 8 establishes that aggregate allocations indeed increase or decrease until
investors devote all or no wealth to the risky asset. Hence, naive risk-averse investors are worse off
relative to their rational counterparts whenever it is optimal to diversify. This is the case whenever
ω ∈ (−αW0/ρη, αW0/ρη); diversification is optimal in a wider range of states when either risk
aversion or the variance in returns (i.e., 1/ρη) is larger.

Moreover, the asset that naive investors come to demand is sometimes the worse one—the one that
yields the lower expected utility. For instance, if the optimal strategy is to invest 80% in the risky
asset, naive investors may end up investing 0%.

Corollary 1. For any collection of parameters (ω, ρω, ρs, ρη, α,W0), there exists an open interval

Ω′ ⊂ R such that whenever ω ∈ Ω′, naive investors eventually allocate all resources to the asset that

yields the lower expected utility.

The intuition is straightforward in light of Proposition 8. Consider the case where ω > ω∗ > 0;
that is, investors expect the risky asset to outperform the safe asset. While this expectation is fulfilled
whenever ω ∈ (0, ω∗), the fact that ω falls sufficiently short of expectations implies that perceptions
of ω decrease over time (Proposition 8, part 3). Eventually, ω̂t will fall so low that investors allocate
no wealth to the risky asset. Panel (a) of Figure 1 depicts this case: when the fundamental value lies
in the the red interval, investors will eventually hold none of the risky asset despite it having a higher
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expected return than the safe one. Panel (b) shows the opposite case where investors may end up
holding only the risky asset despite it being dominated by the safe one.

7 Conclusion

This paper explores new predictions of Eyster and Rabin’s (2010) model of naive inference that
emerge in a broader array of environments than previously studied. In many environments, there exist
“abandoned states” that naive agents necessarily disbelieve in the long run even when they are true.
For instance, under natural assumptions on preferences and signals, naive agents will systematically
form extreme beliefs about the quality of a new technology relative to the status quo—they will either
think it has the highest or lowest possible quality while being blocked from believing it has some
intermediate value. As we have shown, these extreme beliefs can lead to severe under-diversification
in investment settings, or to the costly over-adoption of goods beneficial for only a minority of agents.
This logic also suggests that, relative to more direct methods of information transmission, individuals
may be more susceptible to overpay or inefficiently queue for products when information spreads
through observational learning.

This is not the first paper to study “redundancy neglect” in environments beyond than the canonical
two-state model. However, it does provide results distinct from earlier work. Notably, our predic-
tions regarding extreme beliefs and unlearning distinctly follow from Eyster and Rabin’s (2010)
formulation of naive inference, and do not readily emerge in other models of naive learning based
on the DeGroot model. For instance, in DeMarzo et al. (2003), agents repeatedly share their beliefs
about a normally distributed state within a network and use a naive updating rule based on DeGroot
(1974): each agent treats her neighbors’ reports as independent signals, neglecting that their poste-
riors already incorporate information previously shared amongst each other. Consequently, agents
over-count signals and grow confident in some false state whenever initial signals are misleading.
The nature of this mislearning, however, differs from ours in two ways. First, agents in DeMarzo
et al. (2003) do not gravitate toward extreme perceptions over time. Since the DeGroot heuristic is an
averaging rule, beliefs converge to a weighted average of initial signals instead of tending to extreme
values.48 Second, when the number of observed neighbors grows large, agents in DeMarzo et al.
(2003) learn correctly. The law of large numbers implies that the first round of communication sends
agents directly to a confident and correct posterior. In our setting, even if players correctly learn the
state after one round of observation, later generations mislearn by reinterpreting confident behavior
as if it were autarkic.

Several interesting applications of naive learning remain beyond the scope of our simple frame-

48A similar distinction can be drawn with the many other papers on naive inference that build from DeGroot’s (1974)
framework (e.g., Golub and Jackson (2010)).
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work. Since our model of naive inference only specifies how a player best responds to her obser-
vations, we lack a solution concept to analyze settings where a player’s payoff depends directly on
others’ actions.49 For instance, a natural extension of our extremism results might consider how firms
set prices in order to exploit—or undermine—naive consumers’ tendency to exaggerate quality dif-
ferences across products. Similarly, in the investment setting of Section 6, we believe an equilibrium
model incorporating prices would generate a bubble: as the perceived returns to an asset continually
increase, so will its price.50

Finally, novel predictions may arise with endogenous timing and costly delay.51 Instead of moving
in sequence, suppose investors can choose when to act. This creates an incentive for strategic delay in
order to glean information from others’ investments. But a naive investor, who wrongly thinks others
rely solely on private signals, expects those with optimistic signals to invest immediately and those
with pessimistic signals to exit the market. A naive investor therefore neglects others’ incentive to
delay and expects high initial investment whenever returns are high. However, because investors will
in fact delay, naive observes wrongly attribute the resulting low initial investment to low returns. We
conjecture that such environments systematically promote pessimism among naive agents. Analyzing
the equilibria of these extensions is part of an on-going research agenda incorporating both naive
inference and cursed thinking (Eyster and Rabin, 2005) into models of dynamic learning.
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Appendix

A Cyclic Beliefs
This appendix provides details on cyclic beliefs and provides an example. As noted in Section 3.4,
if the process 〈ω̂t〉 does not converge to a fixed state, then will eventually become periodic. That
is, there exists some period t∗ ≥ 1 and a subset of states {ω̂1, . . . , ω̂L} with L ≥ 2 elements such
that (i) for each l = 1, . . . , L, we have ω̂t∗+l = ω̂l, and (ii) for all t > t∗, we have ω̂t = ω̂t+L. The
process therefore converges to an absorbing set, {ω̂1, . . . , ω̂L}, comprising fixed points of the L-fold
composition of φ. That is, for each ω̂ ∈ {ω̂1, . . . , ω̂L} ω̂ = φL(ω̂).

As discussed in Section 3.4, in an environment that generate cyclic beliefs, the set Ω∗ is insufficient
for identifying states that are permanently disbelieved. Doing so requires us to instead distinguish all
states that are part of an absorbing set. We denote the collection of all such states by Ω∗∗ ≡ {ω ∈
Ω | ∃ L ≥ 1 such that φL(ω) = ω}. For any state in ω̂ ∈ Ω∗∗, it is possible—given the appropriate
realized state ω ∈ Ω and initial condition ω̂2 = ω—that society thinks ω̂ is true infinitely often. Thus,
any state ω outside Ω∗∗ is strongly abandoned: in the long-run, every generation puts arbitrarily small
probability on ω even when it is true.

We now provide an example demonstrating that Ω∗ can be empty. As a result, public opinion never
settles on a fixed belief and instead continually cycles. While the example is admittedly contrived, it
adequately illustrates how the model may give rise to non-convergence. The example concludes by
noting how this non-convergence is robust to alternative social-learning structures (e.g., the canonical
single-file environment).

Suppose that on a fixed day each week, new inventory arrives at a market. Shoppers must choose
a day to visit the market, and thus seek to learn the delivery day ω ∈ {1, 2, . . . , 7}. Conditional
on ω, shoppers earn a payoff u(A|ω) from going to the market on day A. Assume u(ω|ω) = 1,
u(ω + 1|ω) = 9

10
, and u(x|ω) = 0 for all A /∈ {ω, ω + 1}. That is, it is best to shop on the delivery

day; the next day is slightly worse since inventory may be depleted; and all remaining days have
no inventory. Additionally, conditional on state ω, each shopper receives a signal s ∈ {ω − 1, ω}
with mass function f(s = ω|ω) = 2

3
. Given this setup, an uncertain autarkic shopper prefers to

risk arriving a day late rather than arriving a day early. More precisely, upon observing signal s,
a shopper prefers to go the day after her signal suggests: E[u(s|ω)|s] = 2

3
· 1 + 1

3
· 0 = 2

3
and

E[u(s+ 1|ω)|s] = 2
3
· 9

10
+ 1

3
·1 = 14

15
. This structure generates autarkic distributions with Pω(ω) = 1

3
,

Pω(ω + 1) = 2
3
, and Pω(x) = 0 otherwise.52 Hence, in autarky, shoppers expect to see crowds the

day after delivery—not the day of.
To see how naive social learning evolves, suppose the true delivery day is Thursday. Initially, most

shoppers arrive on Friday, and observers correctly deduce the delivery day. The following week, the
crowd arrives on Thursday: since there is no longer uncertainty, it is optimal to go on the precise day
of delivery. However, when people interpret the Thursday crowd as if it were based solely on private
information, they think the delivery must have arrived on Wednesday. Hence, in the third week, the

52For the sake of simplicity, this environment violates Assumption 2.1, which assumes that autarkic distributions have
full support over the set of actions. That assumption guarantees that naive agents do not observe individual actions they
thought were impossible. This possibility is still ruled out in this particular example despite the violation of Assumption
2. Furthermore, the example would yield identical results if we instead assumed Pω(x) = ν for x /∈ {ω, ω+ 1} for some
ν arbitrarily small.
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crowd shows up on Wednesday. Rolling forward, it is clear that for all t ≥ 2, ω̂t+1 is the day before
ω̂t. Beliefs about the delivery day continually cycle through the days of the week. Furthermore, like
the example in Section 3.5, the long-run distribution of beliefs is the same no matter the true state.

Although contrived, the lack of convergence demonstrated by this example does not depend on our
assumption that each generation is large and observes only the previous generation. In the canonical
single-file environment (defined in Section 3.3), public beliefs will still fail to converge to a stationary
point belief. Intuitively, a herd on one action always suggests a state in which it is optimal to take an
action different from the herd. As a result, a naive society cannot maintain any fixed confident belief.

B Proofs
Proof of Lemma 1. Suppose that all agents in Generation t believe the probability of state ω̂t is at
least 1 − ε. For ε small enough, each agent of type θ ∈ Θ from Generation t chooses the unique
action arg maxA∈A u(A|ω̂t, θ) (uniqueness stems from Assumption 1). Thus, Generation t’s action
distribution at is such that at(m)→ Tω̂t(m) a.s. in N .

Naive observers in period t+ 1 think actions in t conditional on ω are independent draws form Pω:
they think Nat ∼ Multinomial(N,Pω) in state ω, implying

Pr(at|ω) = C(N, at)
M∏
m=1

Pω(m)Nat(m),

where C(N, a) ≡ N !/
∏M

m=1Na(m)! is a normalization constant independent of ω. Thus

πt+1(j)

πt+1(k)
=

Pr(at|ωj)π1(j)

Pr(at|ωk)π1(k)
=

(∏M
m=1 Pωj(m)at(m)∏M
m=1 Pωk(m)at(m)

)N
π1(j)

π1(k)
.

Since at(m)→ Tω̂t(m) a.s. in N , we have that πt+1(j)
πt+1(k)

converges to 0 in N for all ωj 6= ωk ⇔ ωk =

argmax
ω∈Ω

∏M
m=1 Pω(m)Tω̂t (m). By Assumption 3, this state ωk is unique. So, for any β′ ∈ R, we can

choose N large enough so that for all ωj ∈ Ω \ {ωk},

log

(
πt+1(k)

πt+1(j)

)
≥ β′. (B.1)

We now show that each agent in Generation t + 1 places probability exceeding 1 − ε on ωk. An
arbitrary agent (n, t+ 1) forms a posterior likelihood ratio p(n,t+1)(k)/p(n,t+1)(j) after observing her
private signal, s(n,t+1), and previous actions, at, which is given by

p(n,t+1)(k)

p(n,t+1)(j)
=

Pr(ωk|s(n,t+1))

Pr(ωj|s(n,t+1))

πt+1(k)

πt+1(j)
. (B.2)

By Assumption 2 (Part 3),

log

(
Pr(ωk|s(n,t+1))

Pr(ωj|s(n,t+1))

)
≥ −β
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for all signals s(n,t+1) ∈ S. From Condition (B.1), the posterior likelihood ratio p(n,t+1)(k)/p(n,t+1)(j)
must satisfy

log

(
p(n,t+1)(k)

p(n,t+1)(j)

)
= log

(
Pr(ωk|s(n,t+1))

Pr(ωj|s(n,t+1))

πt+1(k)

πt+1(j)

)
≥ β′ − β

for all j. Taking β′ large enough, all agents in Generation t+1 believe the state is ωk with probability
at least 1− ε. So fixing ω̂t ∈ Ω, πt+1(ω̂t+1) > 1− ε, where

ω̂t+1 = argmax
ω∈Ω

M∏
m=1

Pω(m)Tω̂t (m) = argmin
ω∈Ω

(
−

M∑
m=1

Tω̂t(m) logPω(m)

)
= argmin

ω∈Ω

H(Tω̂t ,Pω).

The proof is completed by defining φ(ω̂t) ≡ argmin
ω∈Ω

H(Tω̂t ,Pω). �

Proof of Proposition 2. Since each Generation t ≥ 2 acts purely on the public belief under the large-
generation assumption (i.e., private signals do not influence actions), common preferences implies
that for all t ≥ 2, the action distribution at is degenerate (a “herd”). Denote by am the action
distribution degenerate on Am, and let Ah = {am}Mm=1, where M ≡ |A|. For each am ∈ Ah, let
ω̂m = arg minω∈Ω H(Pω, am) denote the updated public belief upon observing am, and let Ωh be
the set of distinct values of ω̂m across m = 1, . . . ,M . Since ω̂m is unique fixing am, |Ωh| ≤ M .
Because at ∈ Ah for all t ≥ 2, ω̂t ∈ Ωh for all t ≥ 3. Since |Ωh| ≤M < |Ω|, the must exist at some
ω′ ∈ Ω\Ωh and thus ω̂t 6= ω′ for all t ≥ 3. The fact that ω̂t ∈ Ωh for all t ≥ 2 also implies |Ω∗| ≤M
and thus Ω∗ ( Ω. �

Proof of Proposition 3. We will show this result by working with likelihood ratios rather than prob-
abilities, so we first introduce some notation. Note that the public belief entering period t can be
written recursively as

πt(k) =
P̂r(xt−1|ωk, πt−1)πt−1(k)∑
ωj∈Ω P̂r(xt−1|ωj, πt−1)πt−1(j)

, (B.3)

where P̂r(xt−1|ωk, πt−1) is a naive observer’s assessment of the likelihood that Player t − 1 takes
action xt−1 in state ωk given the prior public belief πt−1. Fixing a reference state ωk, we let `kt (j)
denote the public likelihood ratio of state ωj ∈ Ω relative to ωk at the start of round t; that is, `kt (j) ≡
πt(j)/πt(k). The vector containing the likelihood ratios of all possible states ωj 6= ωk relative to ωk is
sufficient for πt. We denote this vector in RK−1 by `kt = (`kt (1), . . . , `kt (k−1), `kt (k+1), . . . , `kt (K)).
From (B.3), each element of this likelihood-ratio vector updates in a recursive fashion:

`kt (j) =
P̂r(xt−1|ωk, `kt−1)

P̂r(xt−1|ωk, `kt−1)
`kt−1(j), (B.4)

where P̂r(xt−1|ωk, `tt−1) = P̂r(xt−1|ωk, πt−1) is simply the naive perceived likelihood that Player
t− 1 takes action xt−1 in state ωk given the likelihood-ratio vector rather than πt−1.

Suppose the realized state is ω. To reach a contradiction, suppose that (i) Pr(πt → δ(ωk)|ω) > 0
and that (ii) ωk /∈ Ω∗. Furthermore, from Lemma 1 and Proposition 1, it follows that ωk /∈ Ω∗ iff
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there exists some ωj 6= ωk such that:

φ(ωk) = ωj ⇔ H(Tωk ,Pωk) > H(Tωk ,Pωj)

⇔ −
M∑
m=1

Tωk(m) logPωk(m) > −
M∑
m=1

Tωk(m) logPωj(m)

⇔
M∑
m=1

Tωk(m)
[
logPωj(m)− logPωk(m)

]
> 0

⇔
M∑
m=1

Tωk(m) log

(
Pωj(m)

Pωk(m)

)
> 0. (B.5)

The assumption that ωk /∈ Ω∗ therefore implies that (B.5) holds for some state(s), and let ωj 6= ωk
denote a specific state for which (B.5) holds.

Note that πt → δ(ωk) iff `kt (i) → 0 for all i 6= k (i.e., `kt → 0). Thus, for our assumption that
Pr(πt → δ(ωk)|ω) > 0 to hold, we require Pr(`kt (i) → 0) > 0 for all i 6= k. For a contradiction,
however, we now show that Pr(`kt (j)→ 0|ω) = 0 for ωj satisfying (B.5). The proof follows along the
lines of Smith and Sørensen (2000) and Bohren and Hauser (2021) who similarly consider necessary
conditions for the local stability of public beliefs in social-learning settings.

Toward the desired contradiction, suppose Pr(`k → 0|ω) > 0, and consider a sample path where
`kt → 0. For a fixed ε > 0, let Bε ≡ [0, ε]K−1 be the neighborhood about the limit belief `k = 0.
Let T be the first time such that `kt ∈ Bε for all t > T . If T is not finite, then we have the desired
contradiction. Thus, suppose T is finite. We now consider how the process 〈`kt 〉 behaves in Bε for
t > T , and demonstrate that in fact 〈`kt (j)〉 must eventually exit [0, ε] and thus 〈`kt 〉 exits Bε. From
(B.4), the log likelihood ratio log `kt (j) updates recursively according to

log `kt (j) = log `kt−1(j) + log

(
P̂r(xt−1|ωk, `kt−1)

P̂r(xt−1|ωk, `kt−1)

)
. (B.6)

The sequence in (B.6) is potentially complicated by the fact that a naive observer’s perceived proba-
bility that Player t−1 takes action xt−1 could potentially depend on the public beliefs held at the start
of round t−1. Although this dependence plays a key role in the analysis of the rational belief process
(as in Smith and Sørensen 2000), it is irrelevant here because a naive observer assumes that previous
players infer nothing from others’ actions. Hence, P̂r(xt−1|ωk, πt−1) = Pr(xt−1|ωk, π1); that is, the
perceived probability of xt−1 is simply the probability that a player chooses xt−1 in autarky given the
initial prior π1. This corresponds precisely with our definition of the autarkic distribution: for any
option Am ∈ A, if xt−1 = Am, then P̂r(xt−1|ωk, πt−1) = Pωk(m), where Pωk is defined in Definition
1. Thus, the naive public belief (in log-likelihood form) is characterized by

log `kt (j) = log `kt−1(j) + log

(
Pωj(m)

Pωk(m)

)
if xt−1 = Am. (B.7)

In truth, the transition probabilities of sequence (B.7)—that is, the likelihoods of actions xt−1 =
Am—depend on Player t− 1’s inferred beliefs from previous actions, `kt−1, in addition to her private
signal st−1 and preference type θt−1. Hence, the transition probabilities of 〈`kt (j)〉 between any given
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periods t− 1 and t may depend on the value of `kt−1 within Bε. We will therefore construct a simpler
unidimensional sequence 〈ˆ̀t〉 which has i.i.d. transitions over time, and then compare 〈`kt (j)〉 with
the simplified process 〈ˆ̀t〉. First, define ˆ̀

T+1 = `kT+1(j) so that ˆ̀
T+1 < ε. Next, let

c ≡ min
m∈{1,...,M}

log

(
Pωj(m)

Pωk(m)

)
(B.8)

denote the greatest possible downward change `kt (j) can attain from one period to the next. Let
x∗(θt, st, `

k) be the optimal action for Player t given type and signal (θt, st) and public belief `k, and
let x∗(θt,0) denote the optimal action for type θt when certain of state ωk. For t > T + 1, we define
ˆ̀
t by:

log ˆ̀
t+1 =

 log ˆ̀
t + log

(
Pωj (m)

Pωk (m)

)
if x∗(θt, st, `

k
t ) = x∗(θt,0) for all `k ∈ Bε

log ˆ̀
t + c otherwise.

(B.9)

Essentially, log ˆ̀
t updates identically to log `kt (j) within Bε so long as the signal st does not strongly

contradict the public belief `kt ∈ Bε. Otherwise, log ˆ̀
t updates in favor of ωk in the most favorable

possible way. Denote the probability of the latter event by r(∅). Similarly, for each Am ∈ A, let
r(m) be the probability (conditional on the true state ω) of a type-signal combination (θt, st) such
that x∗(θt, st, `kt ) = x∗(θt,0) = Am for all `k ∈ Bε. Since these probabilities encompass all possible
events dictating the evolution of ˆ̀

t, we have r(∅) +
∑M

m=1 r(m) = 1. Furthermore, note that as
ε→ 0, the probability of a signal st strong enough to induce x∗(θt, st, `t) 6= x∗(θt,0) for any θt ∈ Θ
and ` ∈ Bε converges to zero, and thus r(m) → Tωk(m) and r(∅) → 0 as ε → 0. As such, the
assumption that (B.5) holds implies that for ε sufficiently small:

r(∅)c+
M∑
m=1

r(m) log

(
Pωj(m)

Pωk(m)

)
> 0. (B.10)

Consider an ε such that (B.10) holds. Since (ˆ̀
t+1 − `t)∞t=T+1 is i.i.d. given the construction above,

(ˆ̀
t+1 − ˆ̀

t)/t
a.s.−→ E[log ˆ̀

t+1 − ˆ̀
t] = r(∅)c+

∑M
m=1 r(m) log

(
Pωj (m)

Pωk (m)

)
> 0. Thus limt→∞ ˆ̀

t =

limt→∞[`kT+1(j) +
∑t

τ=T+1(ˆ̀
τ+1 − ˆ̀

τ )] = ∞. By construction ˆ̀
t updates upward weakly less than

`kt (j) so long as `k ∈ Bε. Thus, ˆ̀
t ≤ `kt (j) for all t ≥ T + 1 such that `k ∈ Bε. Therefore, our

assumption that `t ∈ Bε for all t > T implies that limt→∞ `
k(j) ≥ limt→∞ ˆ̀

t = ∞, a contradiction.
Thus, Pr(πt → δ(ωk)|ω) = 0. �

Proof of Proposition 4. First consider the case where Ω∗ 6= ∅. If the true state is ω ∈ Ω∗, then
ω̂2 = ω and ω̂3 = φ(ω) = ω. Rolling forward, ω̂t = ω for all t ≥ 2. Next consider the case
where Ω∗ = ∅. Since long-run beliefs never settle on a fixed state for any initial condition ω̂2 ∈ Ω,
it follows that public beliefs necessarily cycle over some absorbing set that depends on the initial
condition ω̂2 ∈ Ω. Consider any potential absorbing set Ω̂. Given that Ω∗ = ∅, this set cannot be
a singleton, so |Ω̂| ≡ L such that 2 ≤ L ≤ K. By the definition of an absorbing set, the sequence
of public beliefs over Ω̂ must be periodic, and therefore each ω̂ ∈ Ω̂ is a fixed point of the L-fold
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composition of φ. Thus if the true state is ω, then ω̂2 = ω and ω̂2+L = φL(ω̂2) = ω. It follows
from induction on τ that ω̂2+τL = ω for all τ = 1, 2, . . . , and thus public beliefs put arbitrarily high
probability on the true state infinitely often. �

Proof of Proposition 5. Part 1. Suppose ω = H , so ω̂2 = H and a2 = TH , where TH(1) = λ.
Using Lemma 1, ω̂3 = H ⇔ PH(1)λPH(0)1−λ > PL(1)λPL(0)1−λ. Note that PH(1) = ψ[λρ+ (1−
λ)(1−ρ)] and PL(1) = ψ[(1−λ)ρ+λ(1−ρ)]. Letting ` ≡ λρ+(1−λ)(1−ρ), the autarkic frequencies
simplify to PH(1) = ψ` and PL(1) = ψ(1− `). Thus PH(1)λPH(0)1−λ > PL(1)λPL(0)1−λ iff

kH(`, ψ) ≡
(

`

1− `

)λ(
1− ψ`

1 + ψ`− ψ

)1−λ

> 1.

Since kH(`, ψ) is decreasing in ψ, kH(`, ψ) > 1 for all ψ ∈ (0, 1) if kH(`, 1) > 1. Since λ > 1/2
and ρ > 1/2 imply ` ∈ (1/2, 1), it follows that kH(`, 1) = ( `

1−`)
2λ−1 > 1. Hence ω̂3 = H , which

implies ω = H is a fixed point of φ, and thus ω̂t = H for all t > 2.
Part 2. Suppose ω = L, so ω̂2 = L and a2 = TL , where TL(1) = 1−λ. Following the same logic

as Part 1, ω̂3 = H iff

kL(`, ψ) ≡
(

`

1− `

)1−λ(
1− ψ`

1 + ψ`− ψ

)λ
> 1.

Fixing λ > 1/2, kL(`, ψ) > 1 ⇔ ψ < 1−Λ
λ−Λ(1−`) ≡ ψ̄(`), where Λ ≡

(
1−`
`

) 1−λ
λ . Note that ψ̄(`)

is decreasing in `: ∂
∂`
ψ̄(`) < 0 ⇔

(
2`−1
`2

) (
log
(

1−λ
λ

)
+ 1
)

Λ < 1. This holds for any ` ∈ (1/2, 1)
because: (i) 2`−1

`2
< 1, (ii) log

(
1−λ
λ

)
+ 1 < 1, and (iii) Λ < 1. Finally, it’s straightforward to verify

that ψ̄(.5) = 1 and ψ̄(1) = 0. Thus, ` ∈ (1/2, 1) implies that ψ̄(`) ∈ (0, 1) and ψ < ψ̄(`)⇔ ω̂3 = H .
Hence, if ψ > ψ̄, then ω̂3 = L. This implies that ω = L is a fixed point of φ. Thus, ω̂t = L for all
t > 1. If ψ < ψ̄(`), then ω̂3 = H . As shown in Part 1, ω = H is a fixed point of φ for all values of
ψ, meaning ω̂t = H for all t > 1. �

Proof of Proposition 6. We first prove a lemma that we use to prove both this proposition some that
follow.

Lemma B.1. If each Fm satisfies MLRP, then Pω(m) is strictly increasing in qm and strictly decreas-
ing in qj for all j 6= m.

Proof of Lemma B.1. Without loss of generality, we prove the result for Pω(1). We make use of
well-known implications of MLRP (see Milgrom, 1981, Proposition 2):

Remark B.1. Suppose Fm satisfies MLRP.

1. E[qm|sm] is strictly increasing in sm ∈ Sm.

2. Fm(s|qm) satisfies first-order stochastic dominance in s: if qm > q̃m, then for all s ∈ Sm,
Fm(s|qm) ≤ Fm(s|q̃m).

In autarky (i.e., t = 1), Player n with signal realization s = (s1, . . . , sM) chooses A1 if
1 = arg maxm∈{1,...,M} E[qm|s]. Since signals are independent across options, E[qm|s] = E[qm|sm]
for each m, and MLRP implies that each E[qm|sm] is strictly increasing in sm. (All remaining
instances of “increasing” and “decreasing” within this proof are meant in the strict sense.) For each
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m, let km(·) be the increasing function implicitly defined by E[q1|s1] > E[qm|sm] iff s1 > km(sm).
Thus, action A1 is chosen iff s1 > km(sm) for allm > 1. This implies that in state ω = (q1, . . . , qM),
the autarkic probability of choice A1 is

Pω(1) =
M∏
m=2

Pr
(
s1 > km(sm)

∣∣ω) =
M∏
m=2

∫
Sm

1− F 1
(
km(sm)

∣∣q1
)

dFm
(
sm
∣∣qm). (B.11)

We first show that Pω(1) is (strictly) increasing in q1. From Remark B.1, F 1
(
km(sm)

∣∣q1
)

is de-
creasing in q1, which implies that each term

∫
Sm

1 − F 1
(
km(sm)

∣∣q1
)

dFm
(
sm
∣∣qm) of the product

in Equation B.11 is increasing in q1, and thus Pω(1) is increasing in q1. Next, we show Pω(1) is
decreasing in qm for all m ≥ 2. For any arbitrary m ≥ 2, note that each term of the product
in Equation B.11 can be expressed as E[h(sm)|qm] where h(sm) = 1 − F 1

(
km(sm)|q1

)
is a de-

creasing function of sm independent of qm. It is well known that if random variable X first-order
stochastically dominates X ′, then E[h(X)] < E[h(X ′)] for any decreasing function h(·) provided
these expectations are finite. Since sm conditional on qm first-order stochastically dominates sm

conditional on q̃m iff qm > q̃m, E[h(sm)|q̃m] > E[h(sm)|qm] iff qm > q̃m, which implies that
E[h(sm)|qm] =

∫
Sm

1−F 1
(
km(sm)

∣∣q1
)

dFm
(
sm
∣∣qm) is decreasing in qm. Thus, from Equation B.11,

Pω(1) is decreasing in qm. Since Pω(1) is increasing in q1 and decreasing in qm for all m ≥ 2, it
follows that ω1

e uniquely maximizes Pω(1). This concludes the proof of Lemma B.1.
We now use Lemma B.1 to prove Proposition 6. Without loss of generality, index options such

that q1 = arg maxm{qm}. By Assumption 2, a1 reveals ω to Generation 2, implying a2(1) = 1
and a2(m) = 0 for m ≥ 2. From Lemma 1, ω̂3 = φ(ω̂2) = arg maxω̃∈Ω

∏M
m=1 Pω̃(m)a2(m) =

arg maxω̃∈Ω Pω̃(1). Hence, Lemma B.1 implies ω̂3 = ω1
e . Since ω̂3 = ω1

e , all players in Generation 3
choose A1, implying ω̂4 = φ(ω1

e) = arg maxω∈Ω Pω(1) = ω1
e . Since ω1

e is a fixed point of φ, ω̂t = ω1
e

for all t > 2. �

Proof of Proposition 7. Suppose the state is ω0 and suppose Generation 2 puts arbitrarily high prob-
ability on ω0, so ω̂2 = ω0. So long as M is finite, which implies that the prior likelihood ra-

tio π1(ω0)/π1(ωm) = χ
1
M

1−χ
1
M

is finite, we can invoke Lemma 1 to determine 〈ω̂t〉. Since ω̂2 =

ω0, we have a2 → Tω0 = (1 − λ, λ, 0, ..., 0) as N → ∞. From Lemma 1, ω̂3 = φ(ω̂2) =

arg maxω∈Ω

∏M
m=0 P

a2(m)
ω = arg maxω∈Ω Pω(0)1−λPω(1)λ. Hence, ω̂3 is the unique state satisfying(

Pω(0)

Pω̂3(0)

)1−λ( Pω(1)

Pω̂3(1)

)λ
< 1 (B.12)

for all ω ∈ Ω \ {ω̂3}. Given that actions m = 2, . . . ,M are not chosen, it is immediate that ω̂3 ∈
{ω0, ω1}. Hence, we simply need to consider when(

Pω0(0)

Pω1(0)

)1−λ(Pω0(1)

Pω1(1)

)λ
< 1; (B.13)

if B.13 holds, then ω̂3 = ω1, otherwise ω̂3 = ω0. Define L(m|M) ≡ Pω0(m)/Pω1(m) as a function
of M . The remainder of the proof characterizes values of M for which L(0|M)1−λL(1|M)λ < 1.

We first deriveL(0|M). Type θ = H never choosesA0. Type θ = L choosesA0 ⇔ q0
L ≥ E[qm|sm]
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for all m. E[qm|sm] = (1 − pm)qm where pm is the posterior belief that qm = 0 conditional on sm.
Note that

pm = Pr(qm = 0|sm) =

[
1 +

(
χ

1
M

1− χ 1
M

)
f(sm|qm)

f(sm|0)

]−1

.

Let F̃m(p|qm) denote the distribution of posterior beliefs pm conditional on qm induced by the under-
lying signal distribution Fm(s|qm). Since q0

L ≥ E[qm|sm] iff pm is less than threshold p̄mL ≡
|qm−q0L|
|qm| ,

type L chooses A0 in state ω0 with probability

Pω0(0) =
M∏
m=1

F̃m
(
p̄mL
∣∣qm).

In state ω1, this probability is

Pω1(0) = F̃ 1
(
p̄1
L

∣∣0) M∏
m=2

F̃m
(
p̄mL
∣∣qm).

Hence, the likelihood ratio of observing A0 in ω0 relative to ω1 is

L(0|M) =
Pω0(0)

Pω1(0)
=
F̃ 1
(
p̄1
L

∣∣q1
)

F̃ 1
(
p̄1
L

∣∣0) > 1,

where the inequality follows from MLRP (see Remark B.1). Because L(0|M) is independent of M ,
we write it simply as L(0).

We now derive L(1|M). Type θ chooses A1 if both E[q1|s1] ≥ E[qm|sm] for all m > 1 and
E[q1|s1] > q0

θ . Note that E[q1|s1] ≥ E[qm|sm]⇔ p1 ≥ 1−
(
qm

q1

)
(1− pm) ≡ km(pm). This happens

with probability ∫ 1

0

1− F̃ 1
(
km(p)

∣∣q1
)

dF̃m(p|qm),

which implies that in state ω0, type θ = H chooses A1 with probability

M∏
m=2

∫ 1

0

1− F̃ 1
(
km(p)

∣∣q1
)

dF̃m
(
p
∣∣qm),

and type θ = L chooses A1 with probability

(
1− F̃ 1

(
p̄1
L

∣∣q1
)) M∏

m=2

∫ 1

0

1− F̃ 1
(
km(p)

∣∣q1
)

dF̃m
(
p
∣∣qm).

Hence,

L(1|M) =
Pω0(1)

Pω1(1)
=

(
1− (1− λ)F̃ 1

(
p̄1
L

∣∣q1
)

1− (1− λ)F̃ 1
(
p̄1
L

∣∣0)
)

M∏
m=2

∫ 1

0
1− F̃ 1

(
km(p)

∣∣q1
)

dF̃m
(
p
∣∣qm)∫ 1

0
1− F̃ 1

(
km(p)

∣∣0) dF̃m
(
p
∣∣qm) . (B.14)
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MLRP implies that each term in the product above (Equation B.14) is strictly less than 1. This implies
that L(1|M) is strictly decreasing in M and the sequence (L(1|M))∞M=1 converges to 0. Let M be
the smallest integer such that L(0)1−λL(1|M)λ < 1, and note that M is finite since L(0)1−λ is finite
and constant in M .

Thus, whenever M ≥ M , ω̂3 = ω1. Furthermore, if ω̂3 = ω1, then a3(1) = 1. By Lemma
B.1, such autarkic behavior is most likely in ω1. Hence, ω̂4 = ω1, implying ω1 is absorbing. Thus,
M ≥ M implies ω̂t = ω1 for all t ≥ 3. If M < M , then ω̂3 = ω0. Since ω0 is thus an absorbing
state in this case, M < M implies ω̂t = ω0 for all t ≥ 2. �

Proof of Proposition 8. We first derive the autarkic distribution of actions and the function deter-
mining aggregate demand in autarky. We will then use this to prove the various parts of the proposi-
tion. Consider period t = 1 and an arbitrary Player (n, 1) with signal s(n,1). Since the player’s prior
and signal about ω are normally distributed, it follows that Player (n, 1) has a normally-distributed
posterior with mean Ê[ω|I(n,1)] = ρs

ρs+ρω
s(n,1) + ρω

ρs+ρω
ω and variance V̂ar[ω|I(n,1)] = 1

ρs+ρω
(see, e.g.,

DeGroot 1970). It then follows from Equation 4 that Player (n, 1)’s optimal allocation is

z(n,1) ≡
ρs + ρω

2(ρs + ρω) + ρη

{
1 +

ρη
αW0

(
ρs

ρs + ρω
s(n,1) +

ρω
ρs + ρω

ω

)}
, (B.15)

so long as z(n,1) ∈ (0, 1). Thus, Player (n, 1)’s chosen allocation is

x(n,1) =


0 if z(n,1) ≤ 0,

z(n,1) if z(n,1) ∈ (0, 1),
1 if z(n,1) ≥ 1.

(B.16)

Aggregate demand in autarky is thus x̄1 = E[x(n,1)|ω]. Since s(n,1) ∼ N(ω, ρ−1
s ), it follows from

Equation B.15 that z(n,1) ∼ N(µ, σ2) with µ = ν0 + ν1ω, where

ν0 ≡
1

2(ρs + ρω) + ρη

{
ρω

(
ρη
αW0

ω + 1

)
+ ρs

}
, (B.17)

ν1 ≡
ρη
αW0

(
ρs

2(ρs + ρω) + ρη

)
, (B.18)

and σ = ν1/
√
ρs. Letting Φ and φ denote the standard normal CDF and PDF, respectively, we then

have

E[x(n,1)|ω] =

[
Φ

(
1− µ
σ

)
− Φ

(−µ
σ

)]
E[z(n,1)|z(n,1) ∈ (0, 1), ω]

+

[
1− Φ

(
1− µ
σ

)]
· 1 + Φ

(−µ
σ

)
· 0, (B.19)

where

E[z(n,1)|z(n,1) ∈ (0, 1), ω] = µ− σ[φ((1− µ)/σ)− φ(−µ/σ)]/[Φ((1− µ)/σ)−Φ(−µ/σ)]. (B.20)
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Thus, Equation B.19 reduces to

E[x(n,1)|ω] = 1− σ[ψ((1− µ)/σ)− ψ(−µ/σ)], (B.21)

where ψ(x) ≡ xΦ(x) + φ(x). For notational, convenience, let DA(ω) ≡ E[x(n,1)|ω] denote the
autarkic aggregate demand for the risky asset in state ω.

Note that DA(ω) is strictly increasing in ω and takes a value on the interior of [0, 1] for all finite
values of ω. This implies that DA is invertible and x̄1 perfectly identifies ω: Generation t = 2
reaches a public belief ω̂2 = D−1

A (x̄1) = ω. Similarly, each following naive Generation t ≥ 2
reaches a public belief ω̂t such that ω̂t = D−1

A (x̄t−1). However, this inference will be incorrect since
x̄t−1 is not determined by DA for t > 2. Instead, for t > 2, xt−1 results from a demand function,
denoted by DF (ω̂), that specifies the aggregate demand for the risky asset when investors are fully
informed that the fundamental is equal to ω̂. From Equation 4, DF (ω̂) = 1

2
+ ρη

2αW0
ω̂ when this

quantity is in (0, 1), and it is 0 or 1 otherwise. The path of public beliefs is then determined by
ω̂t = D−1

A (x̄t−1) = D−1
A (DF (ω̂t−1)), where the second equality follows from the fact that x̄t−1 =

DF (ω̂t−1). Put differently, DA(ω̂t) = DF (ω̂t−1). Define ω∗ by DA(ω∗) = DF (ω∗).
We now describe the evolution of beliefs. In particular, we will show that ω > ω∗ implies 〈ω̂t〉

(and hence 〈xt〉) is increasing in t, while ω < ω∗ implies that 〈ω̂t〉 (and hence 〈xt〉) is decreasing
in t. Toward that end, let H(ω) ≡ DF (ω) − DA(ω) denote the change in demand that occurs
when investors move from autarky to full information about ω. We will first show that H is strictly
increasing on the interval of ω such that DF (ω) ∈ (0, 1), and that H has a unique root of ω∗ on this
domain.

Note that the interval of ω for whichDF (ω) ∈ (0, 1) is ΩI ≡ (−αW0/ρη, αW0/ρη), which follows
from the expression for DF , above. For ω ∈ ΩI we have

∂H

∂ω
=

ρη
2αW0

+ σ

[
Φ

(
1− µ
σ

)
− Φ

(−µ
σ

)](−∂µ/∂ω
σ

)
=

ρη
2αW0

−
[
Φ

(
1− µ
σ

)
− Φ

(−µ
σ

)]
(∂µ/∂ω) > 0,

which follows from the fact that the difference of CDFs in brackets is strictly less than 1 and ∂µ/∂ω =
ν1 <

ρη
2αW0

where ν1 is defined in Equation B.18. The fact that H is strictly increasing implies that
the root ω∗ is unique. Moreover, it implies that the path of beliefs and allocations will be either
monotonically increasing or decreasing in t, as we show next.

Part 1. Note that agents in generation t + 1 only form point beliefs when x̄t ∈ (0, 1) and hence
ω̂t ∈ ΩI . Otherwise, x̄t ∈ {0, 1} and thus the generation similarly allocates all wealth to the same
asset as generation t, resulting in x̄t+1 = x̄t. Thus, the system reaches a steady state once ω̂t exits
ΩI . Thus, we show that the sequences 〈ω̂t〉 and 〈x̄t〉 are strictly increasing in t while beliefs are in
ΩI (and they are constant otherwise). Let ∆ω(t) ≡ ω̂t − ω̂t−1 and ∆x(t) ≡ x̄t − x̄t−1. First note
that the expression for DF (ω̂) along with the fact that x̄t = DF (ω̂t) implies that if ∆ω(t) > 0 then
∆x(t) > 0, and if ∆ω(t) < 0, then ∆x(t) < 0. Thus, allocations are monotonic in t whenever beliefs
are. We now show that ω̂t is indeed monotonic in t. First, suppose that ω ∈ ΩI and ω > ω∗. We will
show by induction that ∆ω(t) > 0 for all t > 2 such that ω̂t−1 ∈ ΩI . First consider the base case.
Since ω̂2 = ω > ω∗, it follows that H(ω̂2) > 0 and hence DF (ω̂2) > DA(ω̂2). Note that ω̂3 is such
that DA(ω̂3) = DF (ω̂2); thus, the preceding inequality implies DA(ω̂3) > DA(ω̂2) and thus ω̂3 > ω̂2
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since DA is strictly increasing. Thus, ∆ω(3) > 0. Now suppose ∆ω(t) is positive for all t ≤ t∗ for
any t∗ > 3 and suppose ω̂t ∈ ΩI . We have ∆ω(t∗ + 1) > 0 if DF (ω̂t∗+1)−DF (ω̂t∗) > 0. But since
DF (ω̂t∗) = DA(ω̂t∗+1), the previous condition is equivalent to H(ω̂t∗+1) > 0. Since H(ω̂) > 0 for
all ω̂ > ω∗, this will hold so long as ω̂t∗+1 > ω∗. To prove that this final inequality must hold, note
that DA(ω̂t∗+1) = DF (ω̂t∗). Since the induction hypotheses implies that DF (ω̂t∗) > DA(ω̂t∗), we
therefore have DA(ω̂t∗+1) > DA(ω̂t∗) ⇔ ω̂t∗+1 > ω̂t∗ . This implies that ω̂t∗+1 > ω∗ given that we
must have ω̂t∗ > ω∗ due to the induction hypothesis and the fact that ω̂3 > ω > ω∗. Finally, note that
∆ω(t) > 0 implies that ω̂t > ω̂t−1, and thus we have shown that for ω̂t strictly increases in t so long
as ω̂t−1 ∈ ΩI whenever ω > ω∗. An entirely analogous argument shows that ω < ω∗ implies that
∆ω(t) < 0 for all t > 2, and hence ω̂t decreases in t when ω < ω∗. The details are omitted given that
the argument is nearly identical to the one above. Hence, the proof of Part 1 is complete.

Part 2. We now show that ω∗ is increasing in ω and that ω∗ < ω. Since H is strictly increasing in
ω on the domain of interest, the implicit function theorem implies that, for any parameter y, we have
sgn
(
∂ω∗

∂y

)
= −sgn

(
∂H
∂y

∣∣
ω=ω∗

)
.

ω∗ is strictly increasing in ω. since DF is independent of ω and the only component of DA that
depends on ω is µ, we have

∂H

∂ω
= σ

[
Φ

(
1− µ
σ

)
− Φ

(−µ
σ

)](−∂µ/∂ω
σ

)
(B.22)

= −
[
Φ

(
1− µ
σ

)
− Φ

(−µ
σ

)]
1

2(ρs + ρω) + ρη

(
ρωρη
αW0

)
(B.23)

< 0, (B.24)

and thus ω∗ is increasing in ω. Furthermore, it is straightforward to verify that limω→∞DA(ω) = 1
and limω→−∞DA(ω) = 0.

The threshold ω∗ lies below ω. The expression for ∂ω∗

∂ω
derived above can be used to show that

∂ω∗

∂ω
∈ (0, 1). Hence, to show that ω∗ < ω, it suffices to show that ω∗ < 0 when ω = 0. Note that

we have ω∗ < 0 if DF (0) > DA(0), and note that DF (0) = 1/2. Thus, we need only show that
DA(0) < 1/2 when ω = 0. First notice that DA(ω) = 1/2 if and only if µ = 1/2. To see this,
Equation B.21 implies that if µ = 1/2, then

DA(ω) = 1− σ[bΦ(b)− aΦ(a) + φ(b)− φ(a)], (B.25)

where b = 1/2σ and a = −b. Substituting these values of a and b into the expression above and
using the symmetry properties of φ and Φ, we have

DA(ω) = 1− 1

2
[Φ(b) + Φ(−b)] =

1

2
. (B.26)

Thus, to show DA(0) < 1/2 when ω = 0, it suffices to show µ < 1/2 at ω = 0 when ω = 0. In this
case, Equation B.17 implies that ν0 = 1

2+ρη/(ρs+ρω)
< 1/2. Hence, ω∗ < ω.

Part 3. We show that the change in beliefs across periods, ∆ω(t), is increasing in magnitude in
t so long as ω̂t−1 ∈ ΩI . For simplicity, suppose ω > ω∗ so that ∆ω(t) is positive for ω̂t−1 ∈ ΩI

(as in Part 1); the case for ω < ω∗ is analogous aside from changes in beliefs being negative rather
than positive, and hence is omitted. Since DF is linear in ω̂, notice that ∆ω(t) > ∆ω(t − 1) ⇔
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DF (ω̂t)−DF (ω̂t−1) > DF (ω̂t−1)−DF (ω̂t−2). Now notice thatDA(ω̂t) = DF (ω̂t−1) andDA(ω̂t−1) =
DF (ω̂t−2). Substituting these values into the previous condition yields the equivalent condition of
∆ω(t) > ∆ω(t − 1) ⇔ DF (ω̂t) − DA(ω̂t) > DF (ω̂t−1) − DA(ω̂t−1) ⇔ H(ω̂t) > H(ω̂t−1). Since
Part 1 established that ∆ω(t) > 0, we have ω̂t > ω̂t−1 and thus H(ω̂t) > H(ω̂t−1) since H is strictly
increasing. Since the sequence 〈ω̂t〉 is monotonically increasing and exhibits increasing differences
while in ΩI , then if ω ∈ ΩI , there must exist a finite t∗ such that ω̂t∗ ∈ ΩI yet ω̂t∗+1 /∈ ΩI . Thus,
x̄t = 1 for all t ≥ t∗+1. Moreover, we will argue that ω̂t =∞ for all t > t∗+1. Note x̄t = 1 implies
each player (n, t) selects x(n,t) = 1. From Equation 4, if acting in autarky, x(n,t) = 1 ⇔ s(n,t) > c,
where c is the value of s(n,1) in Equation B.15 such that z(n,1) = 1. Hence, Pω(x = 1) = 1− Φ

(
(c−

ω)/
√
ρ−1
s

)
. Since Lemma 1 assumes a finite action and state space, we cannot directly invoke it here.

However, the logic naturally extends. The continuous analog of the cross entropy between Pω(x) and
Tω̂(x) is −

∫ 1

0
Tω̂(x) logPω(x) dx. Note that for t > t∗ + 1, Tω̂t(x) = δ(x − 1), where δ(·) is the

Dirac delta function. Hence−
∫ 1

0
Tω̂t(x) logPω(x) dx = − logPω(1), which is minimized at the state

in which Pω(1) = 1 − Φ
(
(c − ω)/

√
ρ−1
s

)
is maximized. Thus ω̂t+1 = sup Ω = ∞. Furthermore,

given this belief, Tω̂t+1(x) = δ(x− 1), implying again that ω̂t+2 =∞. Extending this logic, we have
ω̂τ = ∞ for all τ > t. As noted above, the proof that ω̂τ → −∞ when the system reaches its lower
boundary (x̄t = 0) is analogous and omitted. �

Proof of Corollary 1. Since the aggregate shocks are identically distributed for both assets, Asset r
dominates Asset s under full information if and only if E[drt |ω] > E[dst |ω] ⇔ ω > 0. There are two
cases to consider: ω∗ > 0 and ω∗ < 0. First, suppose ω > 0 is high enough that ω∗ > 0. Define
Ω′ = (0, ω∗). From Proposition 8, for any value of ω ∈ Ω′, 〈ω̂t〉 diverges to −∞. Hence, whenever
ω ∈ Ω′, investors believe Asset s dominates Asset r even though the opposite is true. Now suppose
ω < 0 is low enough that ω∗ < 0. Define Ω′ = (ω∗, 0). For any realization of ω ∈ Ω′, 〈ω̂t〉 diverges
to +∞. Hence, investors wrongly believe Asset r dominates Asset s. �
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