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Abstract

We examine errors in learning that arise when an agent who suffers attribution bias fails to account for 
her reference-dependent utility. Such an agent neglects how the sensation of elation or disappointment rel-
ative to expectations contributes to her overall utility, and wrongly attributes this component of her utility 
to the intrinsic value of an outcome. In a sequential-learning environment, this form of misattribution gen-
erates contrast effects in evaluations and induces a recency bias: the misattributor’s beliefs over-weight 
recent experiences and under-weight earlier ones. In the long-run, a loss-averse misattributor will grow 
unduly pessimistic and undervalue prospects in proportion to their variability. Both the short and long-run 
properties of beliefs under misattribution suggest a tendency to abandon worthwhile prospects when learn-
ing from experience. We additionally show how misattribution introduces incentives for familiar forms of 
expectations management.
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1. Introduction

When learning from personal experience, our impressions are often swayed by transitory 
states that affect how we feel. For instance, a person may overstate the quality of a restaurant if 
they try it while hungry or may overestimate the desirability of a theme park if they visit during 
good weather (Haggag et al., 2019). Such errors in attribution have long been explored in the psy-
chology literature (for reviews, see Ross, 1977; Gilbert and Malone, 1995). But this research has 
not considered a common source of state-dependent taste: our expectations. Economists have em-
phasized that deviations from expectations shape our experienced utility, arguing that our utility 
from an outcome depends on both its “intrisinc” value and how that value compares to expecta-
tions (e.g., Kahneman and Tversky, 1979; Kőszegi and Rabin, 2006). When learning about this 
intrinsic value from past experiences, a person should distinguish this “reference-free” compo-
nent from the sensation of elation or disappointment it generated. But the evidence on attribution 
errors suggests that parsing these may be difficult. In this paper, we study how an agent’s learning 
process is distorted when she wrongly attributes reference-dependent sensations to her intrinsic 
taste. While learning from personal experience guides a wide range of economic decisions—
shaping, e.g., our evaluations of others, preferences over consumer products, and adoption of 
new technologies—misattribution can hinder this common way we learn.

To illustrate, imagine a consumer learning about a new product or service. If her experience 
falls short of expectations, she will feel unhappy because of both the subpar quality and the nega-
tive surprise. A rational consumer will understand that part of her bad experience derived simply 
from her high expectations. A less introspective consumer, however, might misattribute this dis-
appointment to the underlying quality of the product or service, and consequently underestimate 
how much she would enjoy it in the future. Indeed, such expectations-based disappointments 
have been shown to drive exit from online platforms (Backus et al., 2022) and shape employ-
ees’ perceptions of their workplace (Adhvaryu et al., 2020).2 On the other hand, an employee 
whose initial experience at a new workplace beats expectations will feel happy because of both 
the pleasant conditions and the positive surprise. If she misattributes this latter feeling to the 
quality of the workplace, she will form an overly rosy view of her new job. As these examples 
suggest, surprises may distort perceived outcomes: exceeding expectations inflates perceptions, 
and falling short deflates them.

In this paper, we model an agent who learns from repeated experience about the expected 
value of a prospect—e.g., the average quality of a job or a firm’s service, or the typical benefit 
of an unfamiliar technology. How does misattribution shape this learning process? Over time, 
the agent’s (mis)perceptions of outcomes become interdependent: a misinterpretation of today’s 
outcome causes the agent to form biased expectations about tomorrow, which then distort her 
perception of that outcome. This process generates non-martingale beliefs that help explain well-
documented errors such as contrast effects, overly-volatile beliefs, and a recency bias. We show 
how these short-run dynamics can cause a misattributor to abandon learning too quickly. Fur-

2 Backus et al. (2022) find that new eBay users with higher expectations of winning an auction (measured by time 
spent in the lead) are more likely to quit using the platform if they unexpectedly lose their first auction. Relatedly, after 
an NGO in India improved housing conditions (Adhvaryu et al., 2020), survey responses of workers who were told of 
these improvements ahead of time indicated that these workers perceived their living conditions as worse than those 
who were not informed of the coming improvements in advance. Both of these results highlight that, fixing the realized 
outcome, falling short of expectations can lead to lower perceptions and forecasts. As discussed below, this effect on 
beliefs is not predicted by reference-dependence alone.
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thermore, we show that even if the misattributor learns about a prospect indefinitely, then loss 
aversion leads her to form pessimistic beliefs in the long run. Finally, we emphasize how “expec-
tations management”—the process of restraining an agent’s initial expectations—can effectively 
persuade a misattributor to form inflated posterior beliefs.

We introduce the model in Section 2. We consider a dynamic setting where in each period the 
agent realizes an i.i.d. outcome of a prospect with an unknown mean. Based on this outcome, 
the agent experiences utility composed of two parts: consumption utility—which depends solely 
on the outcome—and reference-dependent utility, which depends on the difference between her 
realized consumption utility and what she expected. She then updates her beliefs about the dis-
tribution of outcomes based on her experienced utility. To preview, suppose utility from outcome 
x ∈ R when expecting θ̂ ∈ R is u(x|θ̂ ) = x + ηn(x|θ̂ ), where the reference-dependent compo-
nent n(x|θ̂ ) is proportional to the difference between x and θ̂ and parameter η > 0 measures 
the weight that elation and disappointment carry on total utility. We assume that a misattributor 
infers from her past utility as if she weighted these sensations by a diminished factor η̂ < η; that 
is, she under-appreciates the extent to which elation or disappointment contributed to her total 
utility. She thus infers a distorted value of each outcome. When x surpasses expectations, she 
infers a value x̂ > x; when x falls short, she infers x̂ < x. The agent then updates her beliefs 
according to Bayes’ Rule as if x̂ truly occurred.

We first show that this simple model captures several well-known ideas. First, it incorporates 
the basic intuition of “disconfirmation” wherein an outcome that deviates from expectations 
is remembered as deviating by more than it really did. Second, our model naturally links the 
“positive-negative asymmetry effect”—the notion that people’s beliefs respond more to bad 
events than good ones—to reference-dependent preferences. Third, it generates sequential con-
trast effects: the current outcome appears better the worse was the previous one.

We then analyze learning in Section 3 by examining the short-run dynamics of a misattrib-
utor’s expectations. In early rounds when beliefs are imprecise, misattribution can generate a 
negative correlation in mean beliefs across periods due to the logic of disconfirmation. As beliefs 
become more precise over time, this anomalous pattern dissipates, but a recency bias emerges—
recent outcomes influence expectations more than older ones.3 Intuitively, a high early outcome 
will cause later outcomes to be underestimated, reducing the overall positive impact of that high 
early outcome on beliefs. This countervailing force implies that the influence of an early outcome 
fades over time. Additionally, we show how the misattributor’s overly volatile beliefs, which stem 
from this recency bias, can cause her to quit learning about a prospect faster than an unbiased 
agent.

In Section 4, we demonstrate how misattribution continues to distort beliefs in the long-run. 
The interplay between beliefs and perceived outcomes can prevent a misattributor from reaching 
correct expectations despite ample experience. Nevertheless, the agent’s beliefs converge. We 
characterize these steady-state beliefs and show that a loss-averse misattributor underestimates 
a prospect’s mean outcome. Furthermore, this pessimistic bias is greater for prospects that are 
more variable. We show that this fact, together with the preferences we examine, implies that a 
misattributor who learns indefinitely about two prospects can form arbitrarily pessimistic beliefs 
about the more variable one, even if the two in truth yield the same expected utility.

3 While other papers incorporate an exogenous recency effect into learning models (e.g., Ehling et al., 2018; Mal-
mendier et al., 2020), our model endogenously generates this effect.
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Both the short-run belief dynamics and this long-run pessimism highlight a central implication 
of misattribution: a tendency to abandon worthwhile prospects when learning from experience. 
Our results may therefore speak to familiar patterns of “adoption and decay” in developing coun-
tries where people briefly adopt beneficial technologies but subsequently abandon them (for 
discussions of these patterns, see Hanna et al., 2014; Kremer et al., 2019).4

In Section 5, we explore how our short-run results enable the common practice of “expecta-
tions management”, wherein expectations are strategically lowered to subsequently beat them. 
We consider a “designer” who can manipulate either prior expectations or outcomes in order 
to inflate the posterior beliefs of a misattributing agent. We focus only on settings where inter-
vention would have no benefit if the agent were unbiased. When the agent’s prior is sufficiently 
imprecise, the designer has an incentive to directly lower prior expectations. This tactic is ineffec-
tive when the prior is more precise, yet other approaches for persuasive expectations management 
arise. Namely, the designer has an incentive (i) to rearrange a fixed set of outcomes in low-to-high 
order; and (ii) to transfer utility from early to later periods in order to “walk down” expectations. 
We discuss how our mechanism may therefore help explain why restraining expectations (and 
then beating them) is persuasive.

We conclude in Section 6 by further discussing our assumptions—including their motivation, 
interpretation, and generalizability—and ways that future research could distinguish misattri-
bution from similar models. We also note how our model naturally extends to a bias in social 
learning where observers under-appreciate how expectations shape others’ experiences. In this 
sense, we caution policy makers and researchers to account for expectations when interpreting 
satisfaction surveys. Our model also suggests a more basic point: what organizations or policy 
makers promise about new technologies or reforms may ultimately shape their perceived value. 
Thus, hype may backfire.

Broadly, our paper extends the literature on attribution bias by characterizing the dynamics 
of beliefs and their long-run convergence. Moreover, we are the first paper to explore attribu-
tion bias with respect to reference-dependent utility. In doing so, we highlight a simple avenue 
through which reference-dependent preferences directly alter beliefs, which would not arise ab-
sent misattribution. In this way, we capture the intuition that the emotional affect of an event may 
alter its perceived informational content.

Related literature

A sizeable literature in psychology explores “attribution biases” wherein extraneous situa-
tional factors are incorrectly attributed to a stable characteristic of a person or good (see Ross, 
1977 for an early review of this literature or Gilbert and Malone, 1995 for a more recent one).

Recent empirical work in economics has explored such attribution biases, though the focus in 
these papers is distinct from ours. For example, Haggag et al. (2019) show that experimental par-
ticipants have a higher willingness to pay for an unfamiliar drink when they first experienced it 
while thirsty. Additionally, frequent patrons of an amusement park are more likely to return when 
their most recent visit was during good weather. These findings suggest that state-dependent 
utilities—stemming from thirst and weather—are wrongly attributed to stable characteristics—

4 These articles discuss behavioral explanations for a number of empirical patterns in development contexts. For a 
specific example of adoption and decay, see Hanna et al. (2016), who find that in-person demonstrations encourage 
people to adopt improved cooking stoves, but inconsistent personal experience thereafter leads them to stop using them.
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the quality of the drink or the desirability of the theme park.5 Relatedly, Haggag et al. (2021)
show that West Point cadets are less likely to study a given major if their initial coursework 
in that area was scheduled very early in the morning. Those authors suggest that the sensation 
of “tiredness” colors these students’ opinions of a given area of study. Our model builds from 
a shared intuition: transient sensations—in our case, elation and disappointment—are misat-
tributed to stable characteristics. However, we extend this literature by analyzing the dynamic 
learning process under attribution bias.

Bushong and Gagnon-Bartsch (2022) utilize a series of experiments which carefully con-
trol expectations to provide evidence of our specific notion of attribution bias with reference-
dependent utility. In that paper’s main experiment, participants completed one of two unfamiliar 
tasks: a neutral task or that same task with an unpleasant noise played in the background. At 
the start of the experiment, we manipulated participants’ expectations about which task they 
would face. Participants in one treatment group determined their task by flipping a coin just be-
fore working, while participants in a second group faced only a little uncertainty over their task. 
Hence, the task assignment for some came as a larger positive surprise (or a larger disappoint-
ment). Hours after participants first worked on their assigned task, we elicited their willingness 
to continue working (WTW) on that task for additional pay. Relative to the group with little 
ex-ante uncertainty, those assigned by coin flip exhibited an inflated WTW on the neutral task 
and a depressed WTW on the unpleasant task. These results, which we show are inconsistent 
with reference-dependence absent misattribution, suggest that the magnitude of the sensations of 
elation or disappointment influenced participants’ ex-post evaluations of those outcomes, in line 
with the theory we present here.6

Other social sciences have noted that prior expectations can alter a person’s evaluation and 
memory of an experience (see, e.g., Wilson and Gilbert, 2003 for a review).7 This research 
highlights that when an outcome deviates from expectations, a person might either assimilate 
it—interpreting it as favoring their current beliefs—or contrast it—interpreting it against their 
current beliefs. Our model, capturing the latter notion, thus stands at odds with “confirmation 
bias”, wherein new evidence is wrongly interpreted as conforming to one’s expectations (e.g., 
Rabin and Schrag, 1999; Fryer et al., 2019). However, these two mechanisms are not mutually 
exclusive. Empirical tests of order effects in belief updating find support for both confirmation 
and disconfirmation effects (e.g., Hogarth and Einhorn, 1992; Geers and Lassiter, 1999).8 And 
there are many settings where the logic of disconfirmation—where perceptions are inversely re-

5 We differ from Haggag et al. (2019) by examining (i) a different domain of attribution bias, and (ii) learning over time, 
with a formal analysis of belief dynamics and long-run perceptions. In contrast to our results, biased forecasts in Haggag 
et al.’s framework vanish with experience. This distinction arises because Haggag et al. rule out complementarities where 
past experiences influence current consumption utility. This is central to our model, as past experiences form the reference 
point against which current consumption is evaluated.

6 This evidence is consistent with the model we propose below and specifically provides strong support for Observa-
tion 1 and suggestive support for Observation 3. However, Bushong and Gagnon-Bartsch (2022) cannot test the dynamic 
implications of our model; in that way, it primarily serves as a foundation for the extensions we explore here.

7 For instance, political scientists have argued that discrepancies between a politician’s performance and citizens’ 
expectations shape how citizens perceive that politician (Kimball and Patterson, 1997; Waterman et al., 1999). Marketing 
has also emphasized the role of expectations on the perceived quality of service (Oliver, 1977, 1980; Boulding et al., 
1993).

8 Geers and Lassiter (1999) provide the following guidance for when to expect contrasts: “[I]n situations in which 
individuals are very motivated to gain a great deal of information (e.g., highly unpredictable situations, or situations with 
a great deal of subjective importance or personal interest), they should be more likely to employ finer rates of unitization 
[. . . ] which should increase the chances for contrast effects in affective experience.”
5
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lated to expectations—seems particularly compelling. For instance, we suspect that tempering 
expectations—rather than hyping them—is often an effective way to enhance ex-post percep-
tions. A movie or a debate performance may seem worse when expectations are high, wait times 
may seem longer when expecting speedy service, and the weather may seem colder when ex-
pecting a warm day.

We also join a growing literature on learning among agents with misspecified models. 
Esponda and Pouzo (2016) provide a general framework for assessing the long-run beliefs and 
behavior of such agents. Elements of our modeling approach—in particular, our analyses of long-
run beliefs—are also similar to those of Heidhues et al. (2018), who study how overconfidence 
can lead an agent to mislearn the mapping from effort to output. They consider an “active-
learning” environment where the agent’s actions affect the distribution of observed outcomes, 
and long-run mislearning arises due to a feedback loop between his erroneous beliefs and his 
actions. A similar feedback mechanism emerges in our model but it stems from the interplay 
between erroneous beliefs and the encoding of outcomes. Thus, our model shares similarities 
with active learning even when the agent faces exogenous data: a misattributor’s current beliefs 
influence her perception of the data in much the same way that an agent’s actions influence the 
true data in an active-learning setting.9

2. A model of misattribution of reference-dependent utility

Reference-Dependent Preferences. Following Kőszegi and Rabin (2006), we consider an agent 
whose overall utility has two additively separable components. The first component, “consump-
tion utility”, denoted by x ∈ R, corresponds to the payoff traditionally studied in economics.10

The second component, “gain-loss utility”, derives from comparing x to a reference level of util-
ity. As in Bell (1985), we take this reference point to be the agent’s expectation of x, denoted by 
θ̂ . We consider a simple piecewise-linear specification of gain-loss utility given by

n(x|θ̂ ) =
{

x − θ̂ if x ≥ θ̂

λ(x − θ̂ ) if x < θ̂,
(1)

where parameter λ ≥ 1 captures loss aversion. The agent’s total utility from outcome x is

u(x|θ̂ ) = x + ηn(x|θ̂ ), (2)

where η > 0 is the weight given to sensations of gain and loss relative to absolute outcomes.

9 Heidhues, Kőszegi, and Strack (2021) study the convergence of mispecified learning with Gaussian priors and out-
comes, an approach we take below. Other work on misspecified learning includes Bohren and Hauser (2021) and Frick et 
al. (2020) on social learning; He (2021) on the gambler’s fallacy; Schwartzstein (2014) on selective attention; and Nyarko 
(1991) and Fudenberg et al. (2017) in experimentation settings. Other models (e.g., Eyster and Rabin, 2010 and Bohren, 
2016) predict overreaction to new observations, but their underlying mechanism—a failure to account for informational 
redundancies in social behavior—is very different from ours. Additionally, Epstein et al. (2010) analyze the limit beliefs 
of an agent who under- or over-reacts to information. While they demonstrate that overreaction in general can cause 
beliefs to converge to a false distributional parameter, we can precisely describe these limit beliefs given our focus on a 
specific misspecified model.
10 For tractability, we will work directly with the distribution of consumption utility rather than the distribution of ma-
terial outcomes. We interpret x as if it derives from a standard Bernoulli utility function, m : R →R, over consumption 
realizations c ∈R such that x = m(c). Appendix C.2 considers an extension to multiple consumption dimensions.
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Learning Environment. The agent is initially uncertain about the distribution of consumption 
utility and learns about it through experience. In each period t = 1, 2, . . . the agent receives con-
sumption utility xt ∈ R drawn independently from a distribution F(·|θ) that depends on an un-
known parameter θ ∈R. To focus the analysis, we assume xt = θ + εt where εt ∼ N(0, σ 2). We 
assume the agent knows the variance σ 2 > 0 and begins with a prior belief θ ∼ N(θ0, ρ2). Let-
ting πt denote her subjective distribution over θ following t outcomes, θ̂t−1 ≡ ∫∞

−∞ θ̃ dπt−1(θ̃)

then denotes the agent’s expectation of θ entering period t .
The agent’s total utility (Equation (2)) in period t is thus u(xt |θ̂t−1) = xt + ηn(xt |θ̂t−1). Im-

portantly, the agent’s expectation, θ̂t−1, represents a fluctuating state variable that introduces 
variation in her utility conditional on xt .

Misattribution of Reference-Dependent Utility. We now turn to the central feature of our 
model. Motivated by the literature on attribution bias, we assume that the agent neglects how her 
past experience was influenced by reference dependence and misattributes this state-dependent 
component of her utility to the underlying consumption value, xt . In doing so, the agent misinfers 
xt based on her total experienced utility. To make this logic of misinference transparent, we focus 
on settings where the agent observes her total utility each period, but the underlying outcome xt

is either unobserved or not readily quantifiable—e.g., a person learning about their taste for an 
experience good.11

We formalize misattribution as follows. After experiencing ut ≡ xt + ηn
(
xt

∣∣θ̂t−1
)
, an un-

biased agent who is updating her beliefs about θ appropriately controls for how much the 
state-dependent gain-loss term influenced her total utility. In contrast, a misattributor under-
appreciates the influence of this state-dependent component and infers from ut as if gains and 
losses were weighted by a diminished factor η̂ ∈ [0, η). After each period, the agent uses her 
memory of ut , along with her misspecified model, to infer the consumption value she must have 
received. Letting û

(
x
∣∣θ̂t−1

) = x + η̂n
(
x
∣∣θ̂t−1

)
, misattributor therefore “encodes” the consump-

tion value x̂t that solves

u
(
xt

∣∣θ̂t−1
)= ut = û

(
x̂t

∣∣θ̂t−1
)
. (3)

Under our model, encoded outcomes take a simple form: Equations (2) and (3) yield

x̂t =

⎧⎪⎨⎪⎩
xt + κG

(
xt − θ̂t−1

)
if xt ≥ θ̂t−1

xt + κL
(
xt − θ̂t−1

)
if xt < θ̂t−1,

(4)

where

κG ≡
(

η − η̂

1 + η̂

)
and κL ≡ λ

(
η − η̂

1 + η̂λ

)
. (5)

The parameters κG and κL represent the extent that elations and disappointments, respectively, 
distort encoded outcomes. They will therefore be used extensively in our analysis of the misat-
tributor’s updating process. Intuitively, κG and κL increase in the degree of misattribution (i.e., 
as η̂ decreases), and κL > κG under loss aversion (i.e., λ > 1).

We assume the agent is unaware of her misencoding but is otherwise Bayesian: she updates 
her beliefs over θ following Bayes’ Rule given her encoded outcomes. Absent misattribution 

11 We suspect that misattribution can occur even when outcomes are precisely quantifiable in the moment (e.g., prices) 
but imperfectly remembered. We discuss this further, along with our other modeling assumptions, in Section 6.
7
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(i.e., η̂ = η), we have κL = κG = 0 and thus the model embeds standard Bayesian updating—
albeit with reference-dependent preferences—as a special case. Finally, whenever we consider 
the agent’s actions (e.g., Propositions 3 and 5), we will assume she behaves according to Equa-
tion (2) given her biased beliefs (see Section 6 for a discussion of the limited impact of this 
assumption and plausible alternatives).

The remainder of the paper examines the process of beliefs, 〈θ̂t〉, that results from the encoding 
error in Equation (4). Here, we first note some intuitive features of our model. We also note some 
connections to existing empirical findings (largely outside of the field of economics). Although 
these connections have not been made previously, we speculate that our model may provide a 
plausible psychological basis for these effects.

First, our model captures the basic logic of disconfirmation: an outcome that deviates from 
expectations is perceived as deviating by more than it really did (as in, e.g., Anderson, 1973; 
Oliver, 1977, 1980; Geers and Lassiter, 1999).

Observation 1. Disconfirmation effect: If xt > θ̂t−1, then x̂t > xt , and if xt < θ̂t−1, then x̂t < xt .

This also implies that the same outcome can be perceived differently as expectations change. 
Second, loss aversion causes disappointment to distort encoded outcomes—and hence beliefs—
more than elation, consistent with evidence on “positive-negative asymmetry effects” in belief 
updating (as in, e.g., Peeters and Czapinski, 1990; Baumeister et al., 2001; Kuhnen, 2015).12

Observation 2. Asymmetric misencoding: Suppose λ > 1. Consider outcomes xg = θ̂t−1 + δ and 
xl = θ̂t−1 − δ. For any δ > 0, |x̂l − xl | > |x̂g − xg|.

Third, misattribution generates “sequential contrast effects”: fixing today’s outcome, its per-
ceived value is higher when yesterday’s value was lower (as in, e.g., Bhargava, 2007; Bhargava 
and Fisman, 2014).

Observation 3. Sequential contrast effect: Fixing xt , x̂t is strictly decreasing in xt−1.

Since current expectations are strictly increasing in the previous outcome, an increase in that 
outcome implies that today’s outcome is assessed against a higher benchmark and thus generates 
a greater disappointment (or a smaller elation).

3. Short-run dynamics of beliefs

The observations above describe how misattribution distorts encoded outcomes; we now an-
alyze how these distortions influence belief updating in the short-run. Although the order of 
outcomes is irrelevant for rational inference, the order in which a misattributor experiences out-
comes alters her perceived value of the prospect. In early rounds, the logic of disconfirmation 

12 Baumeister et al. (2001) succinctly describe the positive-negative asymmetry effect: “[E]vents that are negatively 
valenced (e.g., losing money, being abandoned by friends, and receiving criticism) will have a greater impact on the 
individual than positively valenced events of the same type (e.g., winning money, gaining friends, and receiving praise)... 
This is probably most true in the field of impression formation, in which the positive-negative asymmetry effect has been 
repeatedly confirmed.” While loss aversion (as in Kahneman and Tversky, 1979) implies that prospective losses loom 
large in preferences, we provide a mechanism for why past losses loom large in both memory and forecasts.
8
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(as implied by Observations 1 and 3) can lead to oscillating swings in beliefs. Over time, these 
swings dissipate but a “recency bias” persists: beliefs overweight recent outcomes and under-
weight older ones. In natural choice contexts, this bias may lead a misattributor to terminate 
learning too quickly.

Updating Process under Misattribution. Rational updating follows a simple rule: given prior 
θ̂t−1, the estimate of θ following xt is (1 − αt )θ̂t−1 + αtxt , where αt ≡ 1/(t + σ 2/ρ2) is the 
weight given to the most recent outcome. A misattributor’s updating process follows the same 
rule but with the encoded outcome x̂t in place of xt . Since x̂t = xt + κt

(
xt − θ̂t−1

)
where κt ≡

κG1{xt > θ̂t−1} + κL1{xt < θ̂t−1} (see Equation (4)), it follows that

θ̂t = (1 − αt )θ̂t−1︸ ︷︷ ︸
Direct effect

+ αtxt + αtκt

(
xt − θ̂t−1

)︸ ︷︷ ︸
Disconfirmation effect

. (6)

This highlights that a misattributor’s prior expectation, θ̂t−1, has two opposing effects on her 
posterior, θ̂t . On the one hand, the prior has a direct positive effect stemming from the usual 
logic of Bayesian updating. On the other hand, the prior also has a negative “disconfirmation” 
effect stemming from the contrast between the outcome and expectations.

Equation (6) reveals additional features of the updating process once rearranged as

θ̂t = [1 − αt (1 + κt )]θ̂t−1 + αt (1 + κt )xt . (7)

First, a misattributor “overreacts” to the latest outcome: she weights xt by αt (1 + κt ) instead of 
αt . Second, we can more clearly see when the negative effect discussed above is dominant. From 
the definition of αt , the posterior expectation, θ̂t , is a decreasing function of the prior expectation, 
θ̂t−1, when κt > t − 1 + σ 2/ρ2; that is, when the encoding bias (i.e., κt ) is sufficiently strong 
compared to the relative precision of beliefs entering period t (i.e., t − 1 + σ 2/ρ2).13 Intuitively, 
when these beliefs are imprecise, the posterior heavily weights the encoded outcome, and thus 
the primary effect of the prior is through the disconfirmation channel. This negative relationship 
between prior and posterior beliefs is a stark and novel prediction of misattribution. However, any 
such negative relationship is necessarily short-lived. Since the precision of beliefs increases with 
time, the standard positive effect of the prior eventually dominates. Specifically, once t > t∗ ≡
1 +κL −σ 2/ρ2, the posterior θ̂t is necessarily increasing in the prior, θ̂t−1. Moreover, t > t∗ also 
guarantees that θ̂t lies between xt and θ̂t−1; in contrast, when t < t∗, θ̂t can move so strongly in 
the direction of xt that the posterior “overshoots” the outcome. The value t∗ therefore delineates 
two phases of the belief dynamics and will play an important role in our results below.14

Iterating Equation (7) reveals that a misattributor’s expectations inconsistently weight past 
outcomes in two distinct ways that differ from rational updating: (i) expectations at time t gener-
ically place different weights on each of the previous outcomes; (ii) as more outcomes accrue, 
the weight on outcome xτ relative to other outcomes changes. While we describe these weights 
below, we can readily see the preceding points by advancing Equation (7) by an additional pe-
riod:

13 The agent’s belief entering period t is normally distributed with mean θ̂t−1 and precision [t − 1 + σ 2/ρ2]/σ 2. Thus, 
t − 1 + σ 2/ρ2 is the precision of beliefs relative to the precision of outcomes.
14 It is important to note that t∗ < 1 means that there is only one phase of the dynamics. This is guaranteed when 
κL < σ 2/ρ2; that is, the extent of misattribution is small relative to the precision of the prior entering the first period.
9
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θ̂t+1 = [1 − αt+1(1 + κt+1)][1 − αt (1 + κt )]θ̂t−1

+ αt+1(1 + κt )[1 − αtκt+1]︸ ︷︷ ︸
Distortion factor on xt

xt + αt+1 (1 + κt+1)︸ ︷︷ ︸xt+1

Distortion factor on xt+1

. (8)

Advancing this further reveals the distorted weights that a misattributor attaches to all past out-
comes. By doing so, we can express her expectation after t rounds as a simple (mis)weighted 
sum of the true outcomes (see Appendix A for all proofs).

Lemma 1. A misattributor’s expectation of θ after t rounds can be expressed as

θ̂t = βt
0θ0 + αt

t∑
τ=1

βt
τ xτ , (9)

where βt
0 =∏t

j=1[1 − αj (1 + κj )] and

βt
τ =

{
(1 + κτ )

∏t−1
j=τ [1 − αjκj+1] for τ ∈ {1, . . . , t − 1},

(1 + κτ ) for τ = t.

Since rational expectations in round t place weight αt on each outcome, βt
τ measures how mis-

attribution distorts the weight on outcome xτ relative to the rational benchmark. Hence, βt
τ

correspond to the “distortion factors” underscored in Equation (8). Appendix B.1 provides a 
detailed description of how these weights (and thus beliefs) evolve; our results below will em-
phasize the key insights.

Implications of Biased Updating. We now demonstrate three implications of this biased belief 
process. First, we show that for outcomes occurring after t∗, a misattributor exhibits a recency 
bias: her beliefs weight a recent gain more than a preceding gain and weight a recent loss more 
than a preceding loss, and she underweights an outcome by more the farther it fades into the past.

Proposition 1. Consider expectations after t rounds, θ̂t .

1. The weight on the most recent outcome is distorted by a factor βt
t > 1; the weight on any 

earlier outcome xτ , τ < t , is distorted by a factor βt
τ such that βt

τ → 0 as t → ∞.
2. Consider any two outcomes xτ1 and xτ2 that are both gains or both losses (i.e., κτ1 = κτ2 ). If 

τ2 > τ1 ≥ t∗, then the more recent outcome receives greater weight: βt
τ2

> βt
τ1

> 0.

The intuition underlying Proposition 1 stems from the way that sequential contrast effects 
(Observation 3) play out over time. Namely, early outcomes have a “self limiting” influence 
on later beliefs. Higher expectations both increase the likelihood that subsequent outcomes are 
encoded as losses rather than gains, and cause subsequent disappointing (elating) outcomes to 
be underestimated (overestimated) by more (less). These effects dampen the positive influence 
of a high initial outcome on later beliefs. A similar countervailing force emerges when an initial 
outcome lowers early expectations. Furthermore, as t advances, an early outcome xτ exerts this 
countervailing force on a larger number of subsequent outcomes, which drives the distortion 
factor on xτ to zero. Both parts of the proposition together imply that the most recent outcomes 
eventually have the greatest influence on beliefs, regardless of the underlying parameters.15

15 Part 2 of Proposition 1 focuses on outcomes in the same domain because loss aversion implies that losses influence 
beliefs more than gains (Observation 2). Hence, a loss in period t − 1 may have a larger influence on beliefs than a gain 
10
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The recency bias highlighted in Proposition 1 implies that a misattributor’s beliefs are per-
petually too variable. Indeed, the variance of θ̂t conditional on θ̂t−1 is always larger under 
misattribution than rational learning (see Appendix B.2). Next, we highlight two implications 
of these volatile beliefs; one for the early phase of the dynamics prior to t∗—where the current 
expectation may be decreasing in the previous one—and one for the more stable phase beyond 
t∗—where this anomalous negative relationship vanishes.

In the early phase where beliefs are relatively imprecise (i.e., t < t∗), θ̂t is necessarily de-
creasing in θ̂t−1 if t < κG − σ 2/ρ2 (see Equation (7)).16 Consequently, the apparent weight that 
expectations place on a past outcome alternates between positive and negative as time advances 
according to the product in Lemma 1. This implies that beliefs exhibit predictable oscillations: 
when beliefs initially move in one direction, they will likely move in the opposite direction in the 
following round.

Proposition 2. Consider t < κG − σ 2/ρ2. Conditional on θ̂t−1 and θ , Cov(θ̂t , θ̂t+1) < 0.

These short-run effects evoke, for instance, the logic of the so-called sophomore slump: after a 
surprisingly good first experience, a second experience often falls short of the new, lofty expec-
tations. This pattern arises here even when both outcomes are in fact identical. Since beliefs in 
these early periods “overshoot” the underlying outcome, a positive first experience can cause a 
misattributor to subsequently find that same outcome disappointing and thus revise her beliefs 
downward. This prediction—and the recency bias in Proposition 1—run contrary to alternative 
models of misencoded outcomes in which signals are simply exaggerated or interpreted with a 
pessimistic bias.17

The dynamics in Proposition 2 require t∗ > 1 (since κG − σ 2/ρ2 < t∗). It is worth noting 
that the constellation of parameters that give rise to t∗ > 1 is relatively narrow. The definition 
of κG and κL reveal that even if η̂ = 0—that is, the agent is fully biased—then t∗ < 1 + ηλ, 
implying that t∗ is small under reasonable degrees of loss aversion. Although this limits the 
scope of periods where Proposition 2 applies, it means that the recency bias in Proposition 1 will 
be observed frequently.

Once t > t∗, excessive variability in beliefs persists due to the recency bias in Proposition 1. 
This can have important choice implications; namely, it may induce the agent to terminate learn-
ing too quickly. To illustrate, we examine when a misattributor’s beliefs first fall below some floor 
θ̄ < θ0. This reflects, for example, a setting where the agent experiments with a risky prospect 
and follows a fixed (myopic) stopping rule where she abandons the prospect once it seems suffi-
ciently bad.

Even if t∗ < 1, meaning that the misattributor’s posteriors are always increasing in the prior 
and hence never overshoot the underlying outcome, then her beliefs will cross below any thresh-

in period t . However, for any two outcomes in the same domain, the more recent one receives more weight. Moreover, 
when loss aversion is negligible, more recent outcomes will receive more weight regardless of their domain.
16 This decreasing relationship also holds for t ∈ (κG − σ 2/ρ2, t∗) when the outcome in t is a loss and thus has a 
relatively strong distortionary effect on x̂t . When t < κG −σ 2/ρ2, this negative relationship holds regardless of whether 
xt comes as a gain or a loss. See Appendix B.1 for details.
17 By considering alternative specifications for encoded outcomes, one can model such notions. For instance, one could 
capture “exaggerated signals” with x̂t = ϕxt for ϕ > 1 and two forms of “generalized pessimism” with either (i) x̂t =
xt − ϕ for ϕ > 0 or (ii) x̂t = xt if xt > 0 and x̂t = ϕxt for ϕ > 1 if xt < 0. Importantly, unlike our model, each of these 
variants generates encoded outcomes that are truly i.i.d. Thus, they fail to generate negative covariance in beliefs or a 
recency bias, and they fail to predict the tactics for expectations management that we highlight in Section 5.
11
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old θ̄ faster than her unbiased counterpart. To formalize, let 〈θt 〉 denote the process of rational 
Bayesian mean beliefs, and let SB

θ̄
= min{t ≥ 1|θt < θ̄} and SM

θ̄
= min{t ≥ 1|θ̂t < θ̄} be stop-

ping times indicating when the Bayesian and misattributive belief processes first fall below θ̄ , 
respectively.

Proposition 3. Suppose t∗ < 1 and consider any θ̄ < θ0. With probability one, the misattributor’s 
stopping time, SM

θ̄
, is weakly less than the rational stopping time, SB

θ̄
, and it is strictly less with 

positive probability.

Good outcomes may temporarily inflate a misattributor’s beliefs above the Bayesian ones, but 
subsequent bad outcomes causing the Bayesian beliefs to dip below θ̄ will cause the misat-
tributor’s beliefs to crash even harder. Thus, when the Bayesian beliefs cross below θ̄ , the 
misattributor’s beliefs must do so too, if they haven’t already. Although the misattributor’s beliefs 
obey some Bayesian-like properties when t∗ < 1, misattribution can still cause an undue propen-
sity to quit learning about prospects that initially seem worthwhile. This clarifies our model’s 
connection to our introductory example (Backus et al., 2022) wherein users on eBay are more 
likely to quit the platform after a surprising loss. Those authors note that our form of attribution 
bias may be a plausible psychological basis for their assumptions on how users’ expectations 
depend on past experience. More speculatively, this may speak to, for instance, Kremer, Rao, 
and Schilbach’s (2019) observation that overreaction to discouraging personal experience under-
lies the familiar pattern of adoption then abandonment of beneficial technologies. Those authors 
convey a variety of explanations for this pattern including overinference from small samples and 
base-rate neglect; likewise Hanna et al. (2014) suggest selective attention may be the cause. The 
proposition above suggests that misattribution may offer a compelling alternative.

4. Long-run beliefs and pessimism over risky prospects

We now examine the limiting properties of the belief process described above. In particular, 
we highlight how errors in beliefs can persist despite ample experience with the prospect. Al-
though the misattributor places excess weight on recent outcomes (Proposition 1), her beliefs 
about θ eventually converge. However, these long-run beliefs do not converge to the truth: they 
are biased downward by the agent’s loss aversion. This pessimism increases in proportion to 
the prospect’s underlying variability. Furthermore, this bias implies that the agent will too often 
reject risky-but-worthwhile prospects even after seemingly sufficient experimentation.

We seek to establish that the misattributor’s sequence of mean beliefs 〈θ̂t 〉 converges to a 
steady-state belief, θ̂ , that is consistent with the encoded data it generates. That is, when holding 
expectation θ̂ , the average encoded outcome is equal to θ̂ . Thus, a steady-state belief solves

θ̂ = E
[
xt + κt (xt − θ̂t−1)

∣∣θ̂t−1 = θ̂
]
, (10)

where E[·] is with respect to the true data generating process.
In fact, 〈θ̂t 〉 converges to a unique steady-state belief, which we denote by θ̂∞. We show this 

below, where we also characterize how θ̂∞ depends on the true distributional parameters and the 
misattributor’s underlying preferences.

Proposition 4. Fixing θ and σ 2, there is a unique steady-state belief, θ̂∞, and 〈θ̂t 〉 converges 
almost surely to θ̂∞. Furthermore:
12
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1. The steady-state belief underestimates the true mean, θ̂∞ ≤ θ , and this inequality is strict if 
and only if λ > 1.

2. Comparative statics: If λ > 1, then θ̂∞ is strictly decreasing in the variance (σ 2) and the 
degrees of reference dependence (η) and loss aversion (λ).

Proposition 4 shows that there is a unique solution to Equation (10), and that the process in-
deed converges to this value. Although outcomes are truly i.i.d., convergence does not follow di-
rectly from a basic law of large numbers because encoded outcomes are serially correlated: prior 
outcomes shift the agent’s reference point, thereby influencing the current encoded outcome. Ac-
cordingly, we follow Heidhues et al. (2021) and use techniques from stochastic-approximation 
theory (along with the fact that outcomes are normally distributed) to establish convergence. The 
details of this analysis are discussed in the proof.

Part 1 of Proposition 4 shows that a loss-averse misattributor forms pessimistic beliefs over 
time. Intuitively, loss aversion causes the agent to encode a distribution of outcomes that is neg-
atively skewed relative to the true distribution—she underestimates bad experiences more than 
she overestimates good ones. While loss aversion drives down perceptions of θ , it is not ex-ante 
obvious that such pessimistic expectations will persist. Reference dependence generates a force 
that acts against any resultant pessimism since such beliefs will generate more frequent pleasant 
surprises. This tension can be seen more explicitly from Equation (10), which implies that θ̂∞ is 
characterized by the solution to the following equation:

θ̂ = θ − k Pr
(
xt < θ̂

)(
θ̂ −E

[
xt

∣∣xt < θ̂
])︸ ︷︷ ︸

Downward Bias

where k ≡ (λ − 1)(η − η̂)

(1 + η)(1 + η̂λ)
. (11)

Equation (11) highlights that the bias is proportional to the size of the average encoded loss 
in the steady-state scaled by the likelihood of such a loss. If the agent became too pessimistic, 
losses wouldn’t occur; if she approached accurate expectations, her beliefs would be immediately 
pushed back down. Thus, it follows that θ̂∞ is biased downward and these resultant beliefs are 
inherently stable. Specifically, if the agent’s expectations were to move below (above) θ̂∞, then 
she would experience an increased rate of elations (disappointments) that drive her expectations 
back up (down).

It is worth briefly noting that even with λ = 1, the steady-state distribution of encoded out-
comes has greater variance than the true distribution. Although we focus on learning about θ
alone, this force could lead a misattributor to overestimate the variance of outcomes if she were 
also uncertain about σ 2. In this case, she would mislearn the distribution of xt even without loss 
aversion.18

Part 2 of Proposition 4 shows that greater variability in the distribution of outcomes causes 
the misattributor to underestimate θ by a larger amount. Hence, she develops more pessimistic 
beliefs about prospects that are riskier. Intuitively, increased variance generates greater sensa-
tions of elation and disappointment. And since loss aversion implies that such gain-loss utility is 
negative on average, encoded outcomes tend to decrease in σ 2. Fig. 1 uses a simulated sequence 
of outcomes to depict both results, showing the path of beliefs and the density of perceived out-
comes for two values of σ 2. These results imply, for example, that a client assessing the typical 

18 In Appendix B.3, we sketch an example where the agent learns about both θ and σ 2. Under misattribution, the agent’s 
long-run beliefs overestimate σ 2 and underestimate θ as in Proposition 4.
13



T. Gagnon-Bartsch and B. Bushong Journal of Economic Theory 203 (2022) 105473
Fig. 1. The top-left panel depicts a simulated path of beliefs 〈θ̂t 〉 for both a rational and biased agent. The top-right panel 
shows the true and perceived density of outcomes. The simulation assumes θ = 0, σ 2 = 1, η = 1, λ = 3, and η̂ = 1/3. 
The bottom panels are analogous but assume σ 2 = 5.

speed of service from two firms will conclude that the more variable firm is slower even when 
they are, on average, the same.

We now more formally consider how a misattributor’s long-run bias can harm her decisions. 
Let v(θ̃, σ) ≡ ∫∞

−∞ u(x|θ̃ )f (x|θ̃ )dx denote the agent’s expected (per-period) utility from the 
prospect assuming she is confident that the mean is θ̃ . Accordingly, v(θ, σ) is the agent’s valua-
tion of the prospect if she holds correct beliefs, while v(θ̂∞, σ) is the agent’s valuation under 
long-run (mis)learning with misattribution. Proposition 4 implies that v(θ̂∞, σ) ≤ v(θ, σ): a 
misattributor tends to undervalue the prospect as a result of learning from experience. Thus, 
if presented with an alternative known to have value w ∈ R, the agent will wrongly select 
that alternative over the prospect whenever w ∈ (v(θ̂∞, σ), v(θ, σ)

)
. In this sense, the distance 

v(θ, σ) − v(θ̂∞, σ) provides a measure of how much misattribution may harm decisions regard-
ing the prospect.

Building on our result that θ̂∞ is decreasing in the variance of outcomes (Proposition 4, Part 
2), our next result reveals that v(θ, σ) − v(θ̂∞, σ) is unboundedly increasing in σ . To highlight 
the choice implications of this, we consider two prospects that would be valued the same under 
rational learning, and show that the extent to which the misattributor undervalues the riskier 
of the two can be arbitrarily large. Let θ̂∞(θ, σ) denote the steady-state belief in terms of the 
underlying distributional parameters.
14
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Proposition 5. Consider λ > 1 and fix θ ′ and σ ′. Consider any alternative parameters θ > θ ′
and σ > σ ′ such that v(θ, σ) = v(θ ′, σ ′). Then v

(
θ̂∞(θ, σ), σ

)
is strictly decreasing in σ with 

limσ→∞ v
(
θ̂∞(θ, σ), σ

)= −∞.

As detailed in the proof, this result stems from the fact that (i) v(θ̂, σ) is linear in both θ̂ and 
σ given the agent’s reference-dependent preferences, and (ii) the magnitude of underestimation, 
θ − θ̂∞(θ, σ), is increasing in σ but independent of θ .

The proposition suggests an excessive bias against risk. Consider two prospects, A and B , 
such that A has a higher mean and variance than B yet the two yield the same expected utility 
under correct beliefs. Under a misattributor’s steady-state beliefs, she wrongly expects A to yield 
a lower utility than B , and this discrepancy can be arbitrarily large when the variance of A is 
sufficiently high. Such biased learning may help explain why individuals tend to excessively 
avoid risk based on their personal experiences, as shown in the field by Malmendier and Nagel 
(2011) and more directly in the lab by Shin (2021).

Both Proposition 3 and 5 highlight a central implication of misattribution: a tendency to aban-
don worthwhile prospects when learning from experience. In the short-run, overly volatile beliefs 
may cause the misattributor to abandon a prospect too quickly (Proposition 3). And even if she 
were to experiment indefinitely, her pessimistic long-run expectations can have a similar detri-
mental effect (Proposition 5).

5. Expectations management

Managing expectations is a common practice in many domains. Politicians often walk down 
expectations before debates, friends manage hype before introducing others to a new experi-
ence, and firms sometimes restrain the quality expectations of consumers or clients.19 Why are 
these techniques effective at increasing ex-post impressions? Our model suggests that restraining 
expectations to subsequently beat them can inflate a misattributor’s posterior perceptions. Specif-
ically, we show how and when manipulating (i) prior expectations, (ii) the order of outcomes, or 
(iii) the outcomes themselves (via budget-neutral transfers) can boost a misattributor’s posterior 
beliefs.

We consider a “designer” who seeks to maximize a misattributing agent’s perception of θ
(e.g., the average quality or speed of a firm’s service) after a fixed number of periods, T . Ex-
ante, the designer and agent share a common prior θ ∼ N(θ0, ρ2). For simplicity and ease of 
exposition, we assume the designer understands the agent’s biased updating process, but the agent 
does not consider the designer’s motives to practice expectations management. To justify this 
assumption, we focus on settings where, if the agent did not suffer misattribution, the designer’s 
actions would have either no influence or a negative influence on beliefs.20 Accordingly, the 
misattributor takes outcomes at face value without strategic consideration and treats them as 

19 The idea of firms limiting expectations is commonly acknowledged (e.g., Anderson, 1973). For example, Kopalle and 
Lehmann (2006) and Ho and Zheng (2004) discuss how firms restrain expectations about product quality and delivery 
times, respectively.
20 Since a misattributor is naive about her bias, she believes that her updating process mirrors that of an unbiased agent 
and thus neglects the designer’s incentive to manipulate her. Furthermore, this “designer” need not be a literal actor in the 
model and can be considered as a rhetorical device: the results below simply demonstrate which sequences of outcomes 
(or which priors) maximize posterior beliefs, regardless of whether they were actively manipulated or a result of chance.
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i.i.d. draws from N(θ, σ 2). Such an agent updates her beliefs precisely as in previous sections, 
and our applications here directly extend our earlier results.

First, we consider a designer who can manipulate the agent’s prior expectation before a single 
outcome is realized. Suppose that before x1 is realized, the designer can induce the agent to 
adopt a belief θ ∼ N(θ0 − c, ρ2) for some c ≥ 0. This is a simple way to capture the idea of 
“walking down” the agent’s expectations.21 The designer aims to maximize the agent’s expected 
posterior estimate of θ following x1. That is, he chooses c to maximize E[θ̂1] = α1E[x̂1(c)] +
(1 − α1)

(
θ0 − c

)
, where x̂1(c) is the agent’s encoded value of x1 when expecting θ0 − c, and 

E[·] is w.r.t. the designer’s prior. It is immediate that the designer would prefer c = 0 if the agent 
were unbiased. However, with misattribution, x̂1(c) is increasing in c and thus walking down 
expectations may be beneficial. The optimal value of c is decreasing in the relative precision 
of the induced prior, σ 2/ρ2. When σ 2/ρ2 < κG, the designer has an incentive to walk down 
beliefs as much as possible. When σ 2/ρ2 > κG, the optimal value of c decreases in σ 2/ρ2 until 
it reaches zero at σ 2/ρ2 = (κG +κL)/2, and it remains there for all higher values of σ 2/ρ2. (See 
Appendix B.4 for a formal statement and proof.)

The intuition is straightforward. The benefit of walking down expectations comes from fram-
ing the outcome as a gain; the cost comes from lowering the prior. As discussed in Section 3, the 
former effect dominates when the agent’s prior is sufficiently uninformative, but any potential 
benefit diminishes when the prior is more precise. This suggests that the designer may prefer 
settings with weak priors, as this provides greater scope to manipulate beliefs.

Even when the prior is relatively precise and thus simply “walking down” initial expectations 
is not effective (i.e. σ 2/ρ2 > κL), misattribution still enables alternative tactics for persuasion 
when there are multiple periods. Consider a setting in which the designer can arrange the order 
of some fixed set of T ≥ 2 outcomes. Building on the recency bias in Proposition 1, we show that 
a misattributor in this setting exhibits an increasing-order bias: her perception of θ following a 
fixed set of outcomes is the highest when she experiences those outcomes in an increasing order.

Proposition 6. Consider any set of T distinct outcomes, X . If σ 2/ρ2 > κL, then among all 
possible orderings of the outcomes in X , the misattributor’s posterior expectation θ̂T is highest 
following the sequence in which the elements are ordered from least to greatest.

This result follows from Proposition 1: since early outcomes influence beliefs less than later out-
comes, the designer prefers to restrain early outcomes in order to beat expectations thereafter.22

Indeed, prior research suggests that increasing sequences lead to higher ex-post impressions. 
For instance, Ross and Simonson (1991) had participants sample two video games and find that 
willingness to pay for the pair was significantly higher for those who sampled the better game 
last. Similarly, Haisley and Loewenstein (2011) demonstrate that advertising promotions that 

21 For example, the designer may offer guidance explicitly intended to lower expectations. Ho and Zheng (2004) dis-
cuss how firms may use “maximal delivery time” to temper expectations. Kopalle and Lehmann (2006) offer numerous 
examples from advertising where firms “undersell” to manage customers’ expectations. And in many political settings, 
surrogates attempt to temper expectations before debates. We abstract from the various ways these beliefs could be in-
duced to simply show that lowering prior expectations (however it is done) can sometimes boost the agent’s posterior 
perceptions. Furthermore, we take the variance of this “induced” prior to be the same as the “unmanipulated” prior, but 
this is inconsequential for the result below.
22 Appendix B.5 considers how this result extends for imprecise priors (i.e., σ 2/ρ2 < κL). With T = 2, if one out-
come beats initial expectations, then the agent’s estimate of θ is maximized when she receives the better outcome last, 
regardless of the underlying parameters.
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utilize giveaways are most effective when in increasing order of value; i.e., when they give the 
highest-value item last.

Of course, firms can often do more than manipulate the order of outcomes. Instead of arrang-
ing a fixed set of outcomes, how would a designer—subject to some budget constraint—optimally 
allocate resources across periods? For example, consider a firm with some fixed budget on ex-
periential marketing or a consultant with constrained time to allocate over a month to a client’s 
project. Among all such sequences that sum to a fixed value, B , which one maximizes the mis-
attributor’s final expectations? While the rational posterior would be identical under any such 
sequence, misattribution introduces an incentive to transfer early consumption to later rounds in 
order to generate higher posterior beliefs.

We derive the belief-optimizing sequences of length T . To add realism, we characterize the 
optimal sequence subject to a “participation constraint” mandating that the agent’s beliefs exceed 
a floor θ̄ < 0 in all periods t = 1, . . . , T . This captures, for instance, scenarios where the agent 
has an outside option and can exit the relationship. Accordingly, let ST (B, θ̄ ) ⊂ RT denote the 
set of all outcome sequences of length T that satisfy the constraint 

∑T
t=1 xt ≤ B . To simplify this 

analysis, we normalize θ0 = 0 (without loss of generality) and we focus on B > 0 (the proof also 
handles the case of B < 0, which we briefly discuss below).

Proposition 7. Suppose B > 0 and consider the sequence x∗ ∈ ST (B, θ̄ ) that maximizes the 
misattributor’s posterior expectation, θ̂T . If σ 2/ρ2 > κL, then there exists a threshold T̄ such 
that:

1. If T ≤ T̄ , then x∗
1 = · · · = x∗

T −1 = 0 and x∗
T = B .

2. If T > T̄ , then x∗
1 < θ̄ , x∗

2 = · · · = x∗
T −1 = θ̄ , and x∗

T > B .

Proposition 7 highlights how concentrating gains at the end of an episode—rather than providing 
them incrementally—can boost final perceptions: the optimal sequence delivers a single gain, and 
does so at the end. For instance, a consulting firm may wish to restrain a client’s expectations up 
front, and deliver results in one fell swoop at the end. Intuitively, providing gains early requires 
the designer to uphold this standard in subsequent rounds to avoid perception-harming losses. 
This is inefficient: maintaining this standard is costly, and it does nothing to inflate the agent’s 
perceptions once she has come to expect it. Moreover, it is worth noting that the sequences in 
Proposition 7 lead a misattributing agent to reach a higher final belief than an unbiased one. Since 
misattribution tends to generate pessimistic beliefs under “unmanaged” learning (Section 4), this 
suggests that the optimal sequencing can overcome that negative bias.23

The path of the optimal sequence depends on the number of periods, T . With few (T ≤ T̄ ), 
it is optimal to maintain initial expectations; with more (T > T̄ ), it is optimal to induce an 
initial loss—temporarily lowering beliefs to the floor θ̄ < 0—in order to increase the final gain. 
Intuitively, the threshold T̄ is increasing in loss aversion. If the horizon is short, an initial loss 

23 The optimal sequence provides a single gain at the end because the designer implicitly has linear costs in generating 
outcomes for the agent. This result would become less stark if the mapping from the designer’s resources to the agent’s 
consumption utility were concave, since the designer would have a strict preference to smooth outcomes when facing an 
unbiased agent. That is, if the designer could choose the sequence (y1, . . . , yT ) subject to 

∑T
t=1 yt ≤ B and xt = m(yt )

for some concave, increasing function m, then the designer would have a strict preference for yt = B/T for all t when 
facing an unbiased agent. With a misattributing agent, the designer would instead choose a sequence that generates an 
increasing profile of xt , even though it yields a lower sum 

∑T
t=1 xt than the smoothed profile.
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still looms large in the agent’s final beliefs, and it is thus optimal to avoid it. However, if the 
horizon is longer (or if λ is close to 1), then the designer has an incentive to drop beliefs early, 
thereby “banking” surplus in each subsequent round that can be used to surprise the agent later. 
This is optimal whenever the recency bias in Proposition 1 outweighs the overestimated loss in 
the first period. In this way, Proposition 7 highlights that actively walking down expectations is 
a robust implication of misattribution: it can prove effective even when posteriors are increasing 
in prior beliefs.24

The collection of results above speak to forms of expectations management used in diverse 
settings ranging from politics to marketing. While restraining expectations naturally lowers 
perceptions in many models, our model provides an intuition for why this simple tactic can 
effectively boost them. Relatedly, our results offer a warning against inflating expectations. This 
accords with evidence from Adhvaryu et al. (2020), who examine a field experiment in which an 
NGO improved workers’ housing conditions in India. These improvements were modest but fell 
short of what was originally promised. Perhaps surprisingly, the authors find that workers who 
knew the original plans ahead of time perceived their conditions as worse than workers who were 
neither told about nor provided with any improvements at all. In this way, our results suggest the 
familiar adage: under promise and over deliver.

6. Discussion and conclusion

In this section, we further discuss and justify our modeling decisions. We conclude by provid-
ing some guidance for future empirical tests and extensions.

Interpretation of Misencoded Outcomes. In Section 2, we propose an intuitive interpretation 
for why outcomes are misencoded: the agent observes her total experienced utility following 
outcome xt but does not directly observe xt , and attribution bias then leads her to misinfer xt

from ut . In settings where a person is learning about her tastes—e.g., how much she enjoys an 
unfamiliar product, a new job, etc.—it seems natural to assume that xt is not separately observed 
or readily quantifiable. However, we suspect that misattribution may occur even when outcomes 
are salient in the moment.25 In such settings, misattribution may happen in retrospect: the agent 
fails to parse the outcome from her overall memory of the experience. For instance, a purchase 
that was surprisingly expensive may be remembered as more costly than it really was.

Assumptions on the Agent’s Forecasted Utility. Throughout the paper, we have assumed the 
agent forecasts her utility according to her true gain-loss parameter, η. We believe this is reason-
able under the interpretation that misattribution is retrospective. Alternatively, one could assume 
the agent wrongly forecasts her utility as well, in which case her forecasted utility would substi-
tute η in u(x|θ̂ ) with η̂ (see Equation (2)). Our results directly related to actions do not depend 
on this distinction. Specifically, Proposition 5 holds for either assumption. Likewise, the inter-
pretation of Proposition 3 remains the same so long as the biased and rational agents exhibit the 
same ex-ante risk attitudes.

Restriction to Normally-Distributed Outcomes and Priors. Our model assumes Gaussian out-
comes and priors primarily to streamline the exposition and analysis. Many of our qualitative 

24 As shown in the proof of Proposition 7, this holds even when B < 0, which corresponds to the case where the sum 
of outcomes falls below the agent’s prior. When B < 0, there exists T̃ > T̄ such that T > T̃ implies that the second 
sequence in Proposition 7 is optimal. When T ≤ T̃ , it is optimal to smooth losses across periods, forgoing a final gain.
25 Indeed, in a principal-agent experiment on attribution bias, Brownback and Kuhn (2019) find that principals wrongly 
attribute luck to an agent’s effort even when the agent’s effort is perfectly observable.
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results are more general. For example, Observations 1 and 2 clearly hold for any distributional 
assumptions, and Observation 3 only requires that the agent’s expectation is increasing in the 
most recent outcome. Regarding the belief dynamics presented in Section 3, analogous results 
arise when the outcome and prior distributions are symmetric and quasi-concave, which guar-
antees that a rational agent’s updated estimate of θ falls between her previous estimate and the 
most recent observation (see, e.g., Chambers and Healy, 2012 for details). Additionally, while 
we leverage our Gaussian assumptions in Section 4 to establish convergence, our comparative 
statics on the steady-state belief hold more generally.

Specification of the Gain-Loss Utility Function. We make two important assumptions about 
the form of reference dependence. First, for tractability, we abstract from other elements of 
prospect theory (i.e., diminishing sensitivity and probability weighting) and focus on a linear 
gain-loss function. Second, and perhaps more substantively, we assume the agent’s reference 
point is her recent expectation about consumption utility given our focus on learning from ex-
perience. In these settings, expectations based on past outcomes seem like a natural point of 
comparison.26 That said, the simple intuition of discomfirmation as highlighted in Observation 1
easily extends to alternative definitions of the reference point. Moreover, while there are several 
ways to model expectations-based reference points, we adopt the specification in Equation (1)
primarily for tractability.27 (Appendix C.1 provides an additional discussion on extending our 
model to situations where the agent’s planned actions form her reference point, as in Kőszegi 
and Rabin, 2007.)

Concluding Thoughts. In this paper, we develop a model of learning under attribution bias 
and study how a novel form of this bias distorts learning from experience. This presents an 
opportunity for empirical work and additional extensions.

A natural avenue for empirical exploration is our prediction of belief-based contrast effects: a 
fixed outcome will seem better when contrasted against lower expectations. In sequential settings, 
we predict that contrast effects will increase in the perceived correlation between the previous 
outcome and the current one. Furthermore, in order to separate effects generated by our mech-
anism from other potential explanations—e.g. the gambler’s fallacy (Chen et al., 2016)—our 
model suggests comparing circumstances where outcomes have utility consequences with those 
that don’t. We predict that contrast effects will be enhanced the more that a person cares about the 
outcomes. This empirical strategy can also help distinguish our mechanism from other models 
that predict recency effects, such as base-rate neglect (e.g. Benjamin et al., 2019) or the repre-
sentativeness heuristic (e.g. Bordalo et al., 2017, 2020).

As noted above, a basic feature of our model is that an agent learns differently from out-
comes with utility consequences relative to other forms of information. Thus, our model may 
offer empirical guidance to a literature demonstrating overreaction to personal experience. Some 
researchers suggest that these experience effects arise from endogenous preference formation 
in response to good or bad outcomes (e.g., Thaler and Johnson, 1990; Dillenberger and Rozen, 

26 Several experimental studies find evidence of expectations-based reference points, though the totality of evidence is 
mixed (for example, favoring expectations-based reference points are Abeler et al., 2011; Ericson and Fuster, 2011; Gill 
and Prowse, 2012; Banerji and Gupta, 2014; Karle et al., 2015; against are Heffetz and List, 2014; Gneezy et al., 2017; 
Goette et al., 2019). There is additional evidence of expectations-based reference points from the field, spanning labor 
supply (Crawford and Meng, 2011; Thakral and To, 2021), domestic violence (Card and Dahl, 2011), and decisions in 
game shows and sports (Post et al., 2008; Pope and Schweitzer, 2011).
27 Kőszegi and Rabin (2006) provide a well-known alternative specification that depends on the agent’s full subjective 
beliefs rather than the mean belief. Our approach is far more tractable and delivers similar insights. The working version 
of our paper shows that our long-run results qualitatively extend under this alternative.
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2015; Imas, 2016), while others suggest these effects stem from beliefs that overreact to per-
sonal experience (e.g., Malmendier and Nagel, 2011, 2016). Our model highlights that these two 
channels may be intertwined.

Future work could also examine the boundary between confirmation bias and misattribution. 
In fact, our modeling approach can accommodate a version of confirmation bias. If an agent’s 
mistaken model posits η̂ > η instead of η̂ < η—that is, she overcompensates for reference depen-
dence when inferring from experienced utility—then her updating process will exhibit patterns 
akin to confirmation bias. Rather than exaggerating surprises, her encoded outcomes will be bi-
ased toward her current expectations. Thus, if an empirical estimate of our model suggests that 
η̂ > η, then confirmation bias likely dominates in that particular setting.

Finally, the form of attribution bias we consider may naturally extend to interpersonal con-
texts. For instance, a person reading online product reviews may fail to appreciate that a bad 
rating sometimes reflects the reviewer’s high expectations rather than poor quality. In scenarios 
where consumers form their expectations based on predecessors’ reviews, misattribution—that 
is, taking others’ ratings at face value without accounting for their discrepant expectations—
can hinder social learning. Additionally, these settings may provide data-rich environments to 
explore the empirical implications of our model. If this social misattribution occurs, we would 
expect ratings to demonstrate the dynamic patterns described in this paper.

Appendix A. Proofs of results in the main text

Proof of Lemma 1. The proof follows from induction on t . Note that for any t ≥ 1 and prior 
estimate θ̂t−1, a misattributor’s updated belief is θ̂t = αt x̂t + (1 − αt )θ̂t−1. From Equation (4), 
x̂t = xt + κt (xt − θ̂t−1) where κt = κG1{xt > θ̂t−1} + κL1{xt < θ̂t−1}, and thus

θ̂t = αt (1 + κt )xt + [1 − αt (1 + κt )]θ̂t−1. (A.1)

Turning to the induction argument, first consider the base case: since θ̂0 = θ0, Equation (A.1)
implies θ̂1 = α1(1 + κ1)x1 + [1 − α1(1 + κ1)]θ0. Thus, letting β1

1 = (1 + κ1) and β1
0 = 1 −

α1(1 + κ1) establishes the base case. Now suppose the claim holds for period t > 1. Substituting 
the expression for θ̂t implied by the claim into Equation (A.1) implies

θ̂t+1 = αt+1(1 + κt+1)xt+1 + [1 − αt+1(1 + κt+1)]
(

βt
0θ0 + αt

t∑
τ=1

βt
τ xτ

)
, (A.2)

where βt
t = (1 + κt ), βt

τ = (1 + κτ ) 
∏t−1

j=τ [1 − αjκj+1] for τ = 1, . . . , t − 1, and βt
0 =∏t

j=1[1 − αj (1 + κj )]. Using the fact that αt = αt+1/(1 − αt+1), it follows that αt [1 −
αt+1(1 + κt+1)] = αt+1[1 − αtκt+1]. Thus, for all τ ≥ 1, we have αt [1 − αt+1(1 + κt+1)]βt

τ =
αt+1(1 + κτ ) 

∏t
j=τ [1 − αjκj+1]. The expression in Equation (A.2) can therefore be written as

θ̂t+1 = [1 − αt+1(1 + κt+1)]βt
0θ0

+ αt+1

⎛⎝(1 + κt+1)xt+1 +
t∑

τ=1

⎧⎨⎩(1 + κτ )

t∏
j=τ

[1 − αjκj+1]
⎫⎬⎭xτ

⎞⎠ . (A.3)

Define βt+1
0 =∏t+1

j=1[1 −αj (1 +κj )], βt+1
t+1 = (1 +κt+1), and βt+1

τ = (1 +κτ ) 
∏t

j=τ [1 −αjκj+1]
for τ = 1, . . . , t . Equation (A.3) then reduces to θ̂t+1 = βt+1

0 θ0 + αt+1
∑t+1

τ=1 βt+1
τ xτ , which 

verifies the induction step and completes the proof. �
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Proof of Proposition 1. Part 1. From Lemma 1, we have βt
t = (1 + κt ) > 1 and βt

τ =
(1 + κτ ) 

∏t−1
j=τ [1 − αjκj+1]. To show the latter term converges to zero in t , we must con-

sider two cases. First, suppose that τ < t∗. We can then write βt
τ = (1 + κτ )C

∏t−1
j=t∗ [1 −

αjκj+1], where C ≡∏t∗−1
j=τ [1 − αjκj+1] is necessarily finite valued. Thus, limt→∞ βt

τ = (1 +
κτ )C limt→∞

∏t−1
j=t∗ [1 − αjκj+1]. Note that for all j ≥ t∗, we have 1 − αjκj+1 ∈ (0, 1). Hence, 

1 − αjκj+1 ≤ 1 − αjκ
G, and thus limt→∞ |βt

τ | ≤ (1 + κτ )|C| limt→∞
∏t−1

j=τ [1 − αjκ
G]. Since ∑∞

j=t∗ αj diverges, 
∏∞

j=t∗ [1 −αjκ
G] = 0. Thus, limt→∞ |βt

τ | = 0. Second, suppose that τ ≥ t∗. 

Then limt→∞ βt
τ = (1 + κτ ) limt→∞

∏t−1
j=τ [1 − αjκj+1]. Since τ ≥ t∗, the argument above im-

plies limt→∞
∏t−1

j=τ [1 − αjκj+1] = 0, and thus limt→∞ βt
τ = 0, completing the proof of Part 1.

Part 2. Consider τ2 > τ1 ≥ t∗. Lemma 1 then implies that βt
τ2

− βt
τ1

= (1 − κτ2) 
∏t−1

j=τ2
[1 −

αjκj+1] − (1 − κτ1) 
∏t−1

j=τ1
[1 − αjκj+1] = (1 − κτ2) 

∏t−1
j=τ2

[1 − αjκj+1]
(

1 − ∏t−1
j=τ1

[1 −
αjκj+1]

)
= βt

τ2

(
1 −∏t−1

j=τ1
[1 − αjκj+1]

)
, where the second equality follows from our assump-

tion that κτ2 = κτ1 . Furthermore, since τ1 ≥ t∗, we have 1 − αjκj+1 ∈ (0, 1) for all j ≥ τ1. Thus, 
1 −∏t−1

j=τ1
[1 − αjκj+1] ∈ (0, 1) and hence βt

τ2
− βt

τ1
> 0 given that τ2 > t∗ implies βt

τ2
> 0. �

Proof of Proposition 2. Condition on θ̂t−1, this value will not influence the covariances under 
consideration, and we therefore normalize θ̂t−1 to equal zero without loss of generality. From 
Equation (7), we thus have

Cov
(
θ̂t , θ̂t+1

)
= Cov

(
θ̂t , αt+1(1 + κt+1)xt+1 + [1 − αt+1(1 + κt+1)]θ̂t

)
= αt+1Cov

(
θ̂t , (1 + κt+1)xt+1

)
+ Cov

(
θ̂t , [1 − αt+1(1 + κt+1)]θ̂t

)
.

(A.4)

Note that t < κG − σ 2/ρ2 implies that [1 − αt+1(1 + κG)] < 0. Thus, [1 − αt+1(1 + κt+1)] < 0
for any κt+1 ∈ {κG, κL} and Cov(θ̂t , [1 − αt+1(1 + κt+1)]θ̂t ) < [1 − αt+1(1 + κG)]Var(θ̂t ) < 0. 
Hence, to complete the proof it suffices to show that αt+1Cov

(
θ̂t , (1 + κt+1)xt+1

)
is sufficiently 

small. Note that if κL = κG, then (1 + κt+1)xt+1 is independent of θ̂t (since xt+1 is independent 
of θ̂t conditional on θ ) and Cov

(
θ̂t , (1 + κt+1)xt+1

)= 0, verifying the claim of the proposition. 
Thus, we must further verify that Cov

(
θ̂t , (1 + κt+1)xt+1

)
remains sufficiently small when κL >

κG.
To show that the right-hand side of Equation (A.4) is negative, we expand both terms and show 

that any positive components from the first term are completely offset by negative components 
from the second term. We begin by expanding the first term. Applying Equation (7) again implies

αt+1Cov
(
θ̂t , (1 + κt+1)xt+1

)
= αt+1Cov (αt (1 + κt )xt , (1 + κt+1)xt+1)

= αtαt+1
(
Cov(xt , κt+1xt+1) + Cov(κtxt , κt+1xt+1)

)
,

(A.5)

where the second equality follows from the fact that, conditional on θ , xt and κtxt are both 
independent of xt+1. It will be useful to write κt as follows: κt = κG + δκLt where δκ ≡ κL −
κG > 0 and Lt ≡ 1{xt < θ̂t−1}. Using this notation, along with the conditional-independence 
fact used immediately above, we have Cov(xt , κt+1xt+1) = δκCov(xt , Lt+1xt+1) and

Cov(κtxt , κt+1xt+1) = κGδκCov(xt ,Lt+1xt+1) + δ2
κCov(Ltxt ,Lt+1xt+1). (A.6)
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Hence, the first term on the right-hand side of Equation (A.4) is equal to

αtαt+1
(
(1 + κG)δκCov(xt ,Lt+1xt+1) + δ2

κCov(Ltxt ,Lt+1xt+1)
)
. (A.7)

We will now similarly expand the second term on the right-hand-side of Equation (A.4). Using 
θ̂t = αt (1 + κt )xt along with the notation introduced above, this term is equal to

α2
t

(
(1 + κG)MVar(xt ) + Mδ2

κVar(Ltxt ) + 2(1 + κG)MδκCov(xt ,Ltxt )

− αt+1(1 + κG)2δκCov(xt ,Ltxt ) − αt+1(1 + κG)δ2
κCov(xt ,LtLt+1xt )

− αt+1(1 + κG)δ2
κCov(Ltxt ,Lt+1xt ) − αt+1δ

3
κCov(Ltxt ,LtLt+1xt )

)
, (A.8)

where M ≡ [1 − αt+1(1 + κG)] < 0. It is immediate that each covariance in expression (A.8) is 
positive, and M < 0 therefore implies every term in (A.8) is negative. To complete the proof, we 
will show that the absolute value of the fourth (sixth) term of (A.8) is weakly larger than the first 
(second) term of expression (A.7). This will ensure that Equation (A.4) is negative, completing 
the proof.

Toward that end, note that conditional on θ , Cov(xt , Lt+1xt ) ≥ Cov(xt , Lt+1xt+1) since xt

and xt+1 are independent. Thus, to show that the absolute value of fourth term of (A.8) is weakly 
larger than the first term of (A.7), it suffices to show that α2

t αt+1(1 + κG)2δκ > αtαt+1(1 +
κG)δκ ⇔ αt (1 + κG) > 1, which is true given that [1 − αt+1(1 + κG)] < 0 and αt > αt+1. Sim-
ilarly, Cov(Ltxt , Lt+1xt ) ≥ Cov(Ltxt , Lt+1xt+1), which implies that the absolute value of sixth 
term of (A.8) is weakly larger than the second term of (A.7) if α2

t αt+1(1 + κG)δ2
κ > αtαt+1δ

2
κ ⇔

αt (1 + κG) > 1, which is the same condition as above, and therefore holds. �
Proof of Proposition 3. Following any sequence of outcomes (x1, . . . , xt ) ∈ Rt , let θ̂t and θt

denote a misattributor’s and a rational Bayesian’s estimate of θ , respectively. Without loss of 
generality, let θ0 = 0. We first establish the following lemma.

Lemma A.1. Suppose t∗ < 1. Consider any period t ≥ 1 and suppose that for all i < t , both 
θ̂i ≥ θ̄ and θi ≥ θ̄ . If θt < θ̄ , then θ̂t < θ̄ .

Proof of Lemma A.1: Assume θ0 = 0. Since θt = αt [xt − θt−1] + θt−1 and θt−1 ≥ θ̄ , it fol-
lows that θt < θ̄ implies xt < θ̄ . Thus, xt < θ̂t−1 and xt is encoded as a loss, so κt = κL. 
Hence, Equation (7) implies θ̂t = αt (1 + κL)[xt − θ̂t−1] + θ̂t−1. We want to show θ̂t ≤ θt ⇔
(1 − αt )[θ̂t−1 − θt−1] ≤ αtκ

L[θ̂t−1 − xt ] ⇔
[θ̂t−1 − θt−1] ≤ αt−1κ

L[θ̂t−1 − xt ], (A.9)

where the final condition uses the fact that αt

1−αt
= αt−1. As noted above, the right-hand side 

of (A.9) is positive. Our claim therefore follows immediately if θ̂t−1 ≤ θt−1; we thus assume 
θ̂t−1 > θt−1 henceforth and show that the gap between these two beliefs is bounded as required 
by (A.9).

Let B ≡∑t−1
i=1 xi . Note that Proposition 7 and its proof derive the upper bound on θ̂t−1 (sub-

ject to 
∑t−1

i=1 xi = B and θ̂i ≥ θ̄ for all i ≤ t − 1). Since θt−1 = αt−1B , we can therefore use 
those results to establish an upper bound on θ̂t−1 − θt−1 as a function of θt−1, and then use that 
bound to verify that Condition (A.9) holds. Accordingly, the steps below will use terminology 
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and results from the proof of Proposition 7. As such, we separately consider the case of B > 0
and B < 0 as we do there.

Case 1: B > 0. The proof of Proposition 7 shows θ̂t−1 achieves its highest value (subject to 
the relevant constraints) following either (a) the “final gain” sequence, or (b) the “loss-gain” se-
quence (see that proof for details). We consider each potential maximal sequence in turn, showing 
that Condition (A.9) necessarily holds for either.

Case 1.a. Suppose the “final gain” sequence maximizes θ̂t−1 (subject to the relevant con-
straints), which leads to a maximal value of θ̂t−1 equal to αt−1(1 + κG)B = (1 + κG)θt−1 (as 
argued above Equation (A.52)). Thus, θ̂t−1 − θt ≤ κGθt−1. Substituting this upper bound in the 
left-hand side of Condition (A.9), it suffices to show:

κGθt−1 ≤ αt−1κ
L[θ̂t−1 − xt ] ⇔ κG

κL
θt−1 ≤ αt−1[θ̂t−1 − xt ]. (A.10)

Since B > 0 implies that θt−1 > 0 and since κG/κL ∈ (0, 1], Condition (A.10) holds if θt−1 ≤
αt−1[θ̂t−1 − xt ]. Since θ̂t−1 > θt−1, the previous condition holds if θt−1 ≤ αt−1[θt−1 − xt ] ⇔
θt−1 + αt−1(xt − θt−1) ≤ 0. This inequality strictly holds because (xt − θt−1) < 0 together with 
αt−1 > αt implies that θt−1 + αt−1(xt − θt−1) < θt , and, by assumption, θt < θ̄ < 0.

Case 1.b. Suppose the “loss-gain” sequence maximizes θ̂t−1 (subject to the appropriate con-
straints), which (as shown in Equation (A.51)) implies that the maximal value of θ̂t−1 is equal to 
αt−1(1 + κG) 

[
B − θ̄

(
t − 2 + 1/α1(1 + κL)

)]+ θ̄ , and thus

θ̂t−1 ≤ (1 + κG)θt−1 + Q(t), (A.11)

where Q(t) ≡ αt−1(1 +κG)|θ̄ | 
(
t − 2 + 1

α1(1+κL)

)
+ θ̄ . To show that Condition (A.9) holds, first 

note that we can rewrite it as

[1 − αt−1κ
L]θ̂t−1 ≤ θt−1 − αt−1κ

Lxt . (A.12)

Since xt induces θt < θ̄ , we have xt < x̄ where x̄ is defined implicitly by αt x̄ + (1 − αt )θt−1 =
θ̄ ⇔ x̄ = θ̄/αt −θt−1/αt−1. Note that Condition (A.12) necessarily holds if it holds at xt = x̄ and 
at the maximal value of θ̂t−1; substituting these values into (A.12) yields the following sufficient 
condition:

[1 − αt−1κ
L]Q(t) ≤

(
(1 + κL) − (1 + κG)[1 − αt−1κ

L]
)

θt−1 − αt−1

αt

κLθ̄ . (A.13)

Note that our assumption of t∗ < 1 ensures that 1 − αt−1κ
L ∈ (0, 1). This implies (along with 

B > 0) that the first term on right-hand side of Condition (A.13) is positive; thus, that condition 
holds if

Q(t) ≤ 1

1 − αt−1κL

αt−1

αt

κL|θ̄ |. (A.14)

The right-hand side of Condition (A.14) necessarily exceeds κL|θ̄ |, and hence it suffices to show 
Q(t) ≤ κL|θ̄ |. This is indeed the case, as we can show that Q(t) < κG|θ̄ | and κG ≤ κL. From 
the definition of Q(t), we have Q(t) < κG|θ̄ | iff

αt−1

(
t − 2 + 1

α1(1 + κL)

)
< 1 ⇔ t − 2 +

1 + σ 2

ρ2

(1 + κL)
< t − 1 + σ 2

ρ2 , (A.15)

which must hold given that κL > 0. This completes Case 1.b and hence Case 1.
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Case 2: B < 0. The proof of Proposition 7 shows that θ̂t−1 achieves its highest value (subject 
to the appropriate constraints) following either (a) the “loss-gain” sequence, or (b) the “initial 
loss” sequence. We consider each potential maximal sequence in turn, showing that Condition 
(A.9) necessarily holds for either.

Case 2.a. Suppose the “loss-gain” sequence maximizes θ̂t−1 (subject to the appropriate con-
straints). The arguments of Case 1.b apply here up to Condition (A.13), and thus we aim to 
show that this condition holds when B < 0. Since θt−1 < θ̂t−1 by assumption, we must have 
θt−1 < (1 + κG)θt−1 + Q(t) since the right-hand side of the previous inequality is the maximal 
value of θ̂t−1. Since B < 0 implies that θt−1 < 0, we thus have |θt−1| < Q(t)/κG. This upper 
bound implies that the following condition is sufficient for Condition (A.13):

[1 − αt−1κ
L]Q(t) ≤ −

(
(1 + κL) − (1 + κG)[1 − αt−1κ

L]
)

Q(t)

κG
− αt−1

αt

κLθ̄, (A.16)

which reduces to

(1 + αt−1)κ
L

κG
Q(t) ≤ αt−1

αt

κL|θ̄ | ⇔ Q(t) ≤ κG|θ̄ |, (A.17)

where the second inequality follows from the identity αt−1/(1 + αt−1) = αt . Finally, the dis-
cussion around Condition (A.15) shows that Q(t) ≤ κG|θ̄ |, and hence Condition (A.17) must 
hold.

Case 2.b. Suppose the “initial loss” sequence maximizes θ̂t−1 (subject to the appropriate con-
straints), which (as shown in Equation (A.54)) implies the following bound on θ̂t−1:

θ̂t−1 ≤ α1(1 + κL)

1 + (t − 2)α1(1 + κL)
B = α1(1 + κL)

1 + (t − 2)α1(1 + κL)

(
θt

αt−1

)
. (A.18)

Since θt−1 < 0, Condition (A.18) implies that θ̂t−1 < θt−1 ⇔ α1(1+κL)

1+(t−2)α1(1+κL)
> αt−1, and the 

previous inequality always holds given that κL > 0. Thus, we must have θ̂t−1 ≤ θt−1 in this case. 
However, as argued above, our desired result (i.e., θ̂t < θ̄ ) follows immediately when θ̂t−1 ≤
θt−1. This completes Case 2 and the proof of Lemma A.1.

Let SB
θ̄

= min{t ≥ 1|θt < θ̄} and SM
θ̄

= min{t ≥ 1|θ̂t < θ̄} be stopping times for when the 

Bayesian and misattributor’s belief processes fall below θ̄ , respectively. Lemma A.1 shows that 
if SB

θ̄
= t and θ̂i ≥ θ̄ for all i = 1, . . . , t − 1, then we necessarily have SM

θ̄
= t . This implies 

that SM
θ̄

≤ SB
θ̄

along any sample path, and hence this weak inequality holds with probability one. 

To complete the proof, we must show that SM
θ̄

< SB
θ̄

occurs with positive probability. This can 

be done by considering beliefs following the first outcome: if x1 ∈ (θ̄/α1, θ̄/α1(1 + κL)
)
, then 

θ̂1 < θ̄ while θ1 > θ̄ . The fact that this interval has positive measure completes the proof. �
Proof of Proposition 4. We first prove that beliefs converge to a unique steady-state value.

Step One: unique steady-state belief. Let �(θ̂) denote the deviation between θ̂ and the ex-
pected value of the encoded outcome assuming the agent holds expectation θ̂:

�(θ̂) ≡ E
[
xt + κt (xt − θ̂t−1)

∣∣θ̂t−1 = θ̂
]
− θ̂ , (A.19)

where E[·] is with respect to the true data generating process. Note that �(θ̂) does not depend 
on the value of t since xt is i.i.d. and � takes θ̂t−1 as fixed. Thus, a steady-state belief is defined 
by �(θ̂) = 0. We now show that there is a unique value of θ̂ solving �(θ̂) = 0, and we denote 
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this value by θ̂∞. Notice that E
[
xt + κt (xt − θ̂t−1)|θ̂t−1 = θ̂

] = θ + κG Pr(xt ≥ θ̂ )(E[xt |xt ≥
θ̂ ] − θ̂ ) + κL Pr(xt < θ̂)(E[xt |xt < θ̂ ] − θ̂ ) = θ − k Pr

(
xt < θ̂

)(
θ̂ −E[xt |xt < θ̂ ]), where

k ≡ κL − κG

1 + κG
= (λ − 1)(η − η̂)

(1 + η)(1 + η̂λ)
. (A.20)

Thus, a steady-state belief θ̂ solves

�(θ̂) = θ − kH(θ̂; θ, σ ) − θ̂ = 0, (A.21)

where H(θ̂; θ, σ) ≡ Pr(xt < θ̂)
(
θ̂ −E[xt |xt < θ̂ ]) is a function of both the agent’s belief, θ̂ , and 

the true distributional parameters, θ and σ :

H(θ̂; θ, σ ) = θ̂�

(
θ̂ − θ

σ

)
−

θ̂∫
−∞

x
1

σ
φ

(
x − θ

σ

)
dx, (A.22)

which follows from the fact that xt ∼ N(θ, σ 2), and thus we can write the CDF and PDF of xt

as �((x − θ)/σ ) and φ((x − θ)/σ ), respectively, where � and φ are the standard-normal CDF 
and PDF. Note that H(θ̂; θ, σ) > 0 for all finite θ̂ , and H(θ̂; θ, σ) is a strictly increasing and 
continuous function of θ̂ with ∂

∂θ̂
H(θ̂; θ, σ) = �

(
(θ̂ − θ)/σ

)
> 0. It thus follows that �(θ̂) is a 

strictly decreasing and continuous function of θ̂ with range R. Thus, there exists a unique, finite 
value θ̂∞ such that �(θ̂∞) = 0.

Step Two: almost-sure convergence to the steady-state belief. Let θ̂∞ denote the unique steady-
state belief that solves Equation (A.21). We now show that the sequence of beliefs 〈θ̂t〉 converges 
to θ̂∞. Our convergence arguments, which rely on stochastic approximation theory, are similar 
to those in Esponda and Pouzo (2016) and in particular Heidhues, Kőszegi, and Strack (2021). 
The basic logic is as follows: while encoded outcomes are not independent (x̂t is a function of 
θ̂t−1, which depends on x1, . . . , xt−1), they become approximately independent as t grows large 
and hence θ̂t changes a small amount (on average) in response to any new outcome. As such, a 
result from stochastic approximation theory implies that the limiting value of θ̂t is determined by 
the zero of � (Equation (A.19)), where �(θ̂) is the average deviation of encoded outcomes from 
the agent’s expectation, θ̂ .

We now formalize this argument. From Equation (7), the misattributor’s beliefs update ac-
cording to

θ̂t = θ̂t−1 + α̂t [xt − θ̂t−1], (A.23)

where α̂t ≡ (1 + κt )αt and αt = 1/(t + σ 2/ρ2). This dynamic system is a special case of the
one considered in Theorem 5.2.1 of Kushner and Yin (2003), who provide sufficient conditions 
for the convergence of such a system. Their theorem implies that 〈θ̂t 〉 converges almost surely to 
the unique value θ̂∞ characterized by the solution to �(θ̂) = 0 if the following five conditions 
hold28:

A1.
∑∞

t=1 α̂t = ∞ and limt→∞ α̂t = 0.

28 Note that Kushner and Yin’s theorem applies to cases where there may be multiple stationary points, corresponding 
to cases where the solution to �(θ̂) = 0 is not unique. In our simple case where this solution is unique (as shown above), 
the conditions for their theorem reduce to the ones listed here (see pages 126-127 of Kushner and Yin; see also the 
application of this theorem in Heidhues, Kőszegi, and Strack 2021).
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A2.
∑∞

t=1(α̂t )
2 < ∞.

A3. supt E[|x̂t − θ̂t−1|2|θ ] < ∞, where the expectation is taken at time t = 0.
A4. There exists a continuous function ḡ :R → R and a sequence of random variables 〈ξt〉 such 

that E[x̂t − θ̂t−1|θ̂t−1] = ḡ(θ̂t ) + ξt and 
∑∞

t=1 α̂t |ξt | < ∞ w.p. 1.
A5. There exists a continuously differentiable real-valued function h such that ḡ(θ̂ ) = −h′(θ̂)

and h(θ̂) is constant on each connected subset of �̂ = {θ̂ | ḡ(θ̂ ) = 0}.

We now show that Conditions A1 – A5 hold:
Condition A1. Note that

∞∑
t=1

α̂t =
∞∑
t=1

(1 + κt )αt ≥ (1 + κG)

∞∑
t=1

αt = (1 + κG)

∞∑
t=1

1

t + σ 2/ρ2 . (A.24)

Since the final sum diverges to ∞, 
∑∞

t=1 α̂t must as well. Furthermore, it is clear that 
limt→∞ α̂t = 0.

Condition A2. Note that
∞∑
t=1

(α̂t )
2 =

∞∑
t=1

(1 + κt )
2α2

t ≤ (1 + κL)2
∞∑
t=1

α2
t . (A.25)

From the definition of αt , 
∑∞

t=1(αt )
2 <

∑∞
t=1 1/t2 < ∞. Thus, 

∑∞
t=1(α̂t )

2 < ∞.
Condition A3. We must show supt E[|x̂t − θ̂t−1|2|θ ] < ∞. Note that x̂t − θ̂t−1 = xt + κt (xt −

θ̂t−1) − θ̂t−1 = (1 + κt )(xt − θ̂t−1). Letting θt−1 be the Bayesian estimate of θ following t − 1
rounds, we have

sup
t
E[|x̂t − θ̂t−1|2|θ ] ≤ (1 + κL) sup

t
E[|(xt − θt−1) + (θt−1 − θ̂t−1)|2|θ ]. (A.26)

From Minkowski’s Inequality,√
E[|(xt − θt−1) + (θt−1 − θ̂t−1)|2|θ ] ≤

√
E[|xt − θt−1|2|θ ] +

√
E[|θt−1 − θ̂t−1|2|θ ].

(A.27)

Since E[|xt − θt−1|2|θ ] is finite, we need only examine the second term on the right-hand side 
of Equation (A.27). Using Lemma 1, we can write

θt−1 − θ̂t−1 = αt−1

t−1∑
τ=1

xτ − αt−1

t−1∑
τ=1

βt−1
τ xτ = αt−1

t−1∑
τ=1

(
1 − βt−1

τ

)
xτ , (A.28)

where βt−1
τ , defined in Lemma 1, is a function of κj and αj for j ∈ {τ, . . . , t − 1}. Thus√
E[|θt−1 − θ̂t−1|2|θ ] ≤ αt−1

t−1∑
τ=1

√
E[|(1 − βt−1

τ )xτ |2|θ ]. (A.29)

We now argue that for all t ≥ 2 and all τ ≤ t − 1, the value |1 − βt−1
τ | is bounded from above 

by some finite constant L. For any t , we have βt−1
τ = (1 + κτ ) 

∏t−2
j=τ [1 − αjκj+1]. As described 

in the proof of Proposition 1 (and in Lemma B.1), for any τ , |βt−1
τ | is decreasing in t once 

t −1 > t∗ = 1 +κL−σ 2/ρ2 < ∞. Thus, for τ > t∗, |βt−1
τ | ≤ 1 +κL. Furthermore, for τ ≤ t∗, the 

maximal value of βt−1 is maxi≤t∗(1 +κτ ) 
∏i [1 −αjκj+1], which is finite given the definition 
τ j=τ
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of αj ∈ (0, 1) and κt ∈ {κG, κL}. Thus, it is clear that there exists a finite value L such that 
|1 − βt−1

τ | < L for all t ≥ 2 and τ ≤ t − 1. Thus,√
E[|θt−1 − θ̂t−1|2|θ ] ≤ Lαt−1

t−1∑
τ=1

√
E[|xτ |2|θ ] = Lαt−1

t−1∑
τ=1

√
σ 2 + θ2

≤ L
√

σ 2 + θ2, (A.30)

where the first equality follows from the fact that E[|xτ |2|θ ] = Var(xτ ) + E[xτ |θ ]2. Thus, √
E[|θt−1 − θ̂t−1|2|θ ] is finite as desired.
Condition A4. We take ḡ : R → R to be the function � defined in Equation (A.19) and thus 

ξt = E[x̂t − θ̂t−1|θ̂t−1] − �(θ̂t−1) = 0. As such, it is immediate that 
∑∞

t=1 α̂t |ξt | < ∞ w.p. 1, 
as required. Furthermore, from Equation (A.19), it is straightforward that � (and hence ḡ) is 
continuous given that � and φ are continuous.

Condition A5. We define h by h(θ̂) = − 
∫ θ̂

θ0
ḡ(y)dy = − 

∫ θ̂

θ0
�(y)dy. Given the functional 

form of � implied by Equations (A.21) and (A.22), it is clear that h is well defined, continuous, 
and satisfies h′(θ̂) = −ḡ(θ̂ ). Furthermore, given that ḡ(θ̂ ) = �(θ̂), the fact that �(θ̂) = 0 has a 
unique solution implies that the set �̂ = {θ̂ | ḡ(θ̂ ) = 0} is a singleton, and hence Condition A5 is 
trivially satisfied.

Next, we prove the two enumerated parts of the proposition that describe properties of θ̂∞.
Part 1. From Equation (A.21), θ̂∞ is the value of θ̂ that solves �(θ̂) = θ − kH(θ̂; θ, σ) −

θ̂ = 0. First notice that if λ = 1, then (A.20) implies that k = 0, and hence θ̂∞ trivially solves 
�(θ̂∞) = θ − θ̂∞ = 0 ⇒ θ̂∞ = θ . Thus, the steady-state belief matches the true parameter value 
when λ = 1. To show that θ̂∞ underestimates θ when λ > 1, we examine how θ̂∞ varies in 
λ. Since θ̂∞ solves Equation (A.21), the Implicit Function Theorem along with the fact that 
∂

∂θ̂
H(θ̂; θ, σ) = �

(
(θ̂ − θ)/σ

)
implies that

∂θ̂∞
∂λ

= −
(

∂�(θ̂)

∂θ̂

)−1
∂�(θ̂)

∂λ

∣∣∣∣
θ̂=θ̂∞

= −
(

1 + k�
(
(θ̂∞ − θ)/σ

))−1

H(θ̂∞; θ, σ )
∂k

∂λ
. (A.31)

Recall from above that H(θ̂∞; θ, σ) > 0. Furthermore, (A.20) implies that ∂k
∂λ

> 0 at all λ ≥ 1

and k ≥ 0 at all λ ≥ 1. Hence, Equation (A.31) implies ∂θ̂∞
∂λ

< 0 at all λ ≥ 1. Thus, given that 
θ̂∞ = θ when λ = 1, we have θ̂∞ < θ when λ > 1.

Part 2. The comparative static with respect to λ is established in Part 1. To show the remaining 
claims, we again invoke the Implicit Function Theorem as in Part 1. We begin by showing that 
λ > 1 implies that θ̂∞ is decreasing in σ . Analogous to Equation (A.31), we have

∂θ̂∞
∂σ

= −
(

1 + k�
(
(θ̂∞ − θ)/σ

))−1

k
∂H(θ̂∞; θ, σ )

∂σ
. (A.32)

From the Definition of H in Equation (A.22), we then have

∂H(θ̂∞; θ, σ )

∂σ
= ∂

∂σ

⎛⎜⎜⎝θ̂∞�

(
θ̂∞ − θ

σ

)
−

θ̂∞−θ
σ∫

−∞
[θ + σu]φ (u)du

⎞⎟⎟⎠
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= −
θ̂∞−θ

σ∫
−∞

uφ (u)du, (A.33)

which follows from differentiation under the integral sign. From Part 1, λ > 1 implies that θ̂∞ <

θ , and thus the upper limit of the integral in Equation (A.33) is negative, implying that the 

integral itself is negative. Hence, λ > 1 implies that ∂H(θ̂∞;θ,σ )
∂σ

> 0, in which case Equation 

(A.32) reveals that λ > 1 implies that ∂θ̂∞
∂σ

< 0.

Next, we show that λ > 1 implies that θ̂∞ is decreasing in η. As in Equation (A.31), we have

∂θ̂∞
∂η

= −
(

∂�(θ̂)

∂θ̂

)−1
∂�(θ̂)

∂η

∣∣∣∣
θ̂=θ̂∞

= −
(

1 + k�
(
(θ̂∞ − θ)/σ

))−1

H(θ̂∞; θ, σ )
∂k

∂η
.

(A.34)

As noted in Part 1, 1 + k�
(
(θ̂∞ − θ)/σ

)
and H(θ̂∞; θ, σ) are necessarily positive. Furthermore, 

Equation (A.20) reveals that λ > 1 implies that ∂k
∂η

> 0. Thus, from Equation (A.34), λ > 1

implies that ∂θ̂∞
∂η

< 0. �
Proof of Proposition 5. We first provide an expression for v(θ̃, σ), the agent’s expected (per-
period) utility when she believes that outcomes are distributed xt ∼ N(θ̃, σ 2). Let F(·|θ̃ ) de-
note the CDF of this distribution and let Eθ̃ denote expectations with respect to F(·|θ̃ ). Then 
v(θ̃ , σ) = Eθ̃ [u(x|θ̃ )]. From the definition of u in Equation (2), we thus have

v(θ̃ , σ ) = Eθ̃ [x] + η[1 − F(θ̃ |θ̃ )]
(
Eθ̃ [x|x ≥ θ̃] − θ̃

)
+ ηλF(θ̃ |θ̃ )

(
Eθ̃ [x|x < θ̃] − θ̃

)
= θ̃ − η(λ − 1)F (θ̃ |θ̃ )

(
θ̃ −Eθ̃ [x|x < θ̃ ]

)
= θ̃ − η(λ − 1)H(θ̃; θ̃ , σ ), (A.35)

where H is defined in Equation (A.22). From that definition, we have

H(θ̃; θ̃ , σ ) = θ̃�(0) −
0∫

−∞
[θ̃ + σu]φ(u)du = σ |z̄−|, (A.36)

where z̄− ≡ ∫ 0
−∞ uφ(u)du < 0. Note that z̄− is a constant determined entirely by the standard-

normal distribution and is hence independent of all the parameters in the model. Thus, Equation 
(A.35) simplifies to

v(θ̃ , σ ) = θ̃ − η(λ − 1)σ |z̄−|. (A.37)

Having derived an expression for v, we now analyze the degree to which misattribution dis-
torts the agent’s valuation of a prospect in the steady-state. To do so, we first derive an expression 
for the difference between the misattributor’s steady-state belief and the true mean in terms of 
the underlying distributional parameters, θ and σ . Let θ̂∞(θ, σ) denote the steady-state belief de-
rived in Proposition 4 written explicitly in terms of these parameters. From Equation (A.21) in the 
proof of Proposition 4, note that θ̂∞(θ, σ) is the value of θ̂ that solves θ̂ − θ + kH(θ̂; θ, σ) = 0. 
Using the definition of H in Equation (A.22), we can then define the variable ẑ ≡ (θ̂ − θ)/σ and 
rewrite H(θ̂; θ, σ) as
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H(θ̂; θ, σ ) = θ̂�
(
ẑ
)− ẑ∫

−∞
[θ + σz]φ (z) dz = σ

⎛⎜⎝ẑ�
(
ẑ
)− ẑ∫

−∞
zφ (z) dz

⎞⎟⎠ . (A.38)

Hence, the steady-state condition, θ̂ − θ + kH(θ̂; θ, σ) = 0, is equivalent to

ẑ + k

(
ẑ�
(
ẑ
)− ẑ∫

−∞
zφ (z) dz

)
= 0, (A.39)

and thus θ̂∞(θ, σ) is characterized by the value of ẑ that solves Equation (A.39). Furthermore, 
since θ̂∞(θ, σ) is unique and finite, there exists a unique, finite ẑ that solves Equation (A.39). 
Denote this value by z∗. Clearly z∗ depends solely on �, φ, and k, and is thus independent of 
θ and σ . As such, z∗ = (θ̂∞(θ, σ) − θ)/σ implies that θ̂∞(θ, σ) = θ + z∗σ . Furthermore, since 
λ > 1, Proposition 4 implies that θ̂∞(θ, σ) < θ and thus z∗ < 0. Hence,

θ̂∞(θ, σ ) = θ − |z∗|σ. (A.40)

Now fix a finite parameter pair (θ ′, σ ′) and consider the set of parameters P(θ ′, σ ′) ≡
{(θ, σ) | v(θ, σ) = v(θ ′, σ ′)}. Consider any (θ, σ) ∈ P(θ ′, σ ′). From Equation (A.37), we have 
v(θ̂∞(θ, σ), σ) = θ̂∞(θ, σ) − η(λ − 1)σ |z̄−|. Substituting our expression for θ̂∞(θ, σ) from 
Equation (A.40) then yields

v(θ̂∞(θ, σ ), σ ) = (θ − |z∗|σ )− η(λ − 1)σ |z̄−|
= v(θ, σ ) − |z∗|σ = v(θ ′, σ ′) − |z∗|σ, (A.41)

where the second equality follows from the definition of v(θ, σ) in Equation (A.37), and the 
third equality follows from (θ, σ) ∈ P(θ ′, σ ′). Since v(θ ′, σ ′) is fixed and finite, Equation 
(A.41) implies that for (θ, σ) ∈ P(θ ′, σ ′), we have v(θ̂∞(θ, σ), σ) strictly decreasing in σ and 
limσ→∞ v(θ̂∞(θ, σ), σ) = −∞. �
Proof of Proposition 6. We begin by proving a lemma that describes the posterior belief after 
two outcomes, which shows that if σ 2/ρ2 > κL, then θ̂2 is maximized when the higher outcome 
happens last. We then extend this result to an arbitrary number of outcomes T ≥ 2.

Lemma A.2. Consider any a, b ∈ R such that a > b. Let θ̂ i
2 denote the posterior expectation 

following the increasing sequence (b, a), and let θ̂ d
2 denote it following the decreasing sequence 

(a, b). If σ 2/ρ2 > κL, then θ̂ i
2 > θ̂d

2 .

Proof of Lemma A.2: The misattributor’s posterior expectation of θ after t observations is 

θ̂t =
(

σ 2

tρ2+σ 2

)
θ0 +

(
ρ2

tρ2+σ 2

)∑t
τ=1 x̂τ , which implies θ̂ i

2 = α2(b̂
i
1 + âi

2) + (1 − 2α2)θ0 where 

b̂i
1 and âi

2 are the encoded values of b and a respectively when facing the increasing sequence 
(b, a). Likewise, θ̂ d

2 = α2(â
d
1 + b̂d

2 ) + (1 − 2α2)θ0, where âd
1 and b̂d

2 are the encoded values 
when facing the decreasing sequence (a, b). Let κi

1 = κG1{b > θ0} + κL1{b < θ0}, and κi
2 =

κG1{a > θ̂ i
1} + κL1{a < θ̂ i

1} where θ̂ i
1 = α1(1 + κi

1)(b − θ0) + θ0. Similarly, let κd
1 = κG1{a >

θ0} +κL1{a < θ0}, and κd = κG1{b > θ̂d} +κL1{b < θ̂d} where θ̂ d = α1(1 +κd)(a − θ0) + θ0. 
2 1 1 1 1
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Hence âd
1 = a + κd

1 (a − θ0), b̂i
1 = b + κi

1(b − θ0), âi
2 = a + κi

2(a − θ0 −α1[1 + κi
1](b − θ0)), and 

b̂d
2 = b + κd

2 (b − θ0 − α1[1 + κd
1 ](a − θ0)). This implies θ̂ i

2 > θ̂d
2 if and only if

κi
1(b − θ0) + κi

2(a − θ0 − α1[1 + κi
1](b − θ0))

> κd
1 (a − θ0) + κd

2 (b − θ0 − α1[1 + κd
1 ](a − θ0)). (A.42)

Letting ã = (a − θ0) and b̃ = (b − θ0), Condition (A.42) reduces to

κi
1b̃ + κi

2(ã − α1[1 + κi
1]b̃) > κd

1 ã + κd
2 (b̃ − α1[1 + κd

1 ]ã). (A.43)

There are three cases to consider depending on whether ã and b̃ have the same sign. When ã and 
b̃ have the same sign, then κi

1 = κd
1 and condition (A.43) reduces as follows, which is useful for 

checking the various cases: θ̂ i
2 > θ̂d

2 if and only if

κi
2

(
1 + α1[1 + κi

1])(ã − b̃
)− (κd

2 − κi
2)
(
b̃ − α1[1 + κd

1 ]ã)> κi
1(ã − b̃). (A.44)

The remainder of the proof considers all relevant cases before applying the assumption that 
σ 2/ρ2 > κL); this allows us to use the analysis here to derive Corollary 1, which drops this 
assumption.

Case 1: θ0 < b < a. This implies κi
1 = κd

1 = κG. There are 3 sub-cases to consider:
Case 1.a. Suppose both a and b come as gains if received in t = 2, implying κi

2 = κd
2 = κG. 

Hence, Condition (A.44) amounts to κG
(
1 +α1[1 +κG])(ã− b̃

)
> κG(ã− b̃), which holds given 

ã > b̃.
Case 1.b. Suppose both a and b come as losses if received in t = 2, implying κi

2 = κd
2 = κL. 

Hence, Condition (A.44) amounts to κL
(
1 +α1[1 +κG])(ã − b̃

)
> κG(ã − b̃), which holds given 

ã > b̃ and κL > κG.
Case 1.c. Suppose only a comes a gain if received in t = 2, implying κi

2 = κG and κd
2 = κL. 

Hence, Condition (A.44) amounts to κG
(
1 +α1[1 +κG])(ã− b̃

)−(κL−κG)
(
b̃−α1[1 +κG]ã)>

κG(ã − b̃) ⇔ κG
(
α1[1 + κG])(ã − b̃

)− (κL − κG)
(
b̃ − α1[1 + κG]ã)> 0. Since b̂d

2 comes as a 
loss in this case, b̃ − α1[1 + κG]ã < 0, meaning the previous condition holds.

Case 2: b < a < θ0. This implies κi
1 = κd

1 = κL. There are 3 sub-cases to consider:
Case 2.a. Suppose both a and b come as losses if received in t = 2, implying κi

2 = κd
2 = κL. 

Hence, Condition (A.44) amounts to κL
(
1 +α1[1 +κL])(ã− b̃

)
> κL(ã− b̃), which is true given 

ã > b̃.
Case 2.b. Suppose both a and b come as gains if received in t = 2, implying κi

2 = κd
2 =

κG. Hence, Condition (A.44) amounts to κG
(
1 + α1[1 + κL])(ã − b̃

)
> κL(ã − b̃) ⇔ κG

(
1 +

α1[1 + κL]) > κL. There are parameter values for which this condition does not hold (i.e., when 
λ − 1 > α1(1 + ηλ)). However, for both a and b to come as gains in t = 2 in this case requires 
α1(1 + κL) > 1, which contradicts our assumption that σ 2/ρ2 > κL. Thus, the condition above 
always holds when σ 2/ρ2 > κL.

Case 2.c. Suppose only a comes as a gain if received in t = 2, implying κi
2 = κG and κd

2 = κL. 
Hence, Condition (A.44) amounts to κG

(
1 +α1[1 +κL])(ã− b̃

)−(κL −κG)
(
b̃−α1[1 +κL]ã)>

κL(ã − b̃) ⇔ κGα1(1 + κL)(ã − b̃) > (κL − κG)(1 − α1(1 + κL))ã. The left-hand side of the 
previous inequality is always positive, while the right-hand side is negative if α1(1 + κL) < 1. 
Thus, that inequality always holds under our assumption of σ 2/ρ2 > κL.
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Case 3: b < θ0 < a. This implies κi
1 = κL, κd

1 = κG, κi
2 = κG, and κd

2 = κL. Hence, Condition 
(A.43) amounts to κLb̃ + κG(ã − α1[1 + κL]b̃) > κGã + κL(b̃ − α1[1 + κG]ã) ⇔ −α1κ

G[1 +
κL]b̃ > −α1κ

L[1 + κG]ã, which holds given ã > 0 > b̃, as assumed in this case.
In summary, the only cases where θ̂ i

2 > θ̂d
2 might fail for some parameter values are 2.b and 

2.c. However, θ̂ i
2 > θ̂d

2 is guaranteed in both of these cases when α1(1 +κL) < 1, which is implied 
by our assumption that σ 2/ρ2 > κL. This completes the proof of Lemma A.2.

Completing the proof of Proposition 6: Let X = {x1, · · · , xT } be an arbitrary set of T distinct 
elements of R. Let S(X ) be the set of all distinct sequences formed from elements of X . For any 
sequence x ∈ S(X ), let θ̂T (x) denote the misattributor’s expectation following x, and let θ̂t (x) de-
note the misattributor’s expectation following the first t outcomes of x. We say x = (x1, . . . , xT )

is increasing if xi < xi+1 for all i = 1, . . . , T − 1. Let x∗ = arg maxx∈S(X ) θ̂T (x). Toward a con-
tradiction, suppose that x∗ is not increasing. Hence, there must exist adjacent outcomes x∗

i , x∗
i+1

such that x∗
i > x∗

i+1. Consider an alternative sequence x′ that is identical to x∗ except it permutes 
outcomes in i and i + 1: x′

i = x∗
i+1 and x′

i+1 = x∗
i . Note that beliefs entering round i are identical 

under both sequences; i.e., θ̂i−1(x
∗) = θ̂i−1(x

′). However, Lemma A.2 implies that the permuted 
sequence leads to a higher belief at the end of period i+1; i.e., θ̂i+1(x

′) > θ̂i+1(x
∗). If i +1 = T , 

then the proof is complete. Otherwise, note that the assumption σ 2/ρ2 > κL implies that all of 
the weights in Lemma 1 are always positive (see Lemma B.1 for details). This means that for 
any sequence x̃ ∈RT , θ̂T (x̃) is strictly increasing in θ̂i+1(x̃) when holding (x̃i+2, . . . , x̃T ) fixed. 
Hence, θ̂i+1(x

′) > θ̂i+1(x
∗) implies θ̂T (x′) > θ̂T (x∗), yielding a contradiction and completing 

the proof. �
Proof of Proposition 7. Adopting the notation introduced in the proof of Proposition 6, let 
x ∈ RT denote a generic sequence of length T , let θ̂T (x) denote the misattributor’s expectation 
following x, and let θ̂t (x) denote this expectation following the first t outcomes of x. To stream-
line notation, let � be a binary relation over sequences defined by x � x̃ ⇔ θ̂T (x) > θ̂T (x̃).

Without loss of generality, let θ0 = 0. Although the statement of this proposition focuses on 
B > 0, our proof will consider both B > 0 and B < 0 for sake of completeness and because 
the case with B < 0 is useful for the proof of Proposition 3. Fixing x, Lemma 1 implies that 
θ̂T (x) = αT

∑T
t=1 βT

t xt . We therefore aim to characterize the solution of the following problem:

max
x∈RT

T∑
t=1

βT
t xt subject to

T∑
t=1

xt ≤ B and θ̂t (x) ≥ θ̄ ∀t = 1, . . . , T . (A.45)

When analyzing this optimization problem, we must account for the fact that the weights, βT
t , 

also depend on the sequence, x, since their values depend on the induced path of gains and losses 
(see Lemma 1). Additionally, it is clear that the budget constraint, 

∑T
t=1 xt ≥ B , always binds at 

the optimum. We now characterize the solution to Problem (A.45), which we denote by x∗. We 
begin by noting three general properties of x∗, and then we describe how x∗ further depends on 
B and T .

Property 1: x∗ is weakly increasing. We first show that x∗ is weakly increasing; i.e., x∗
t ≤ x∗

t+1
for all t = 1, . . . , T − 1. This follows from Proposition 6: if x∗ were not weakly increasing, then 
a permutation of its elements will generate a strict increase in θ̂T (x∗), leading to a contradiction. 
Note that this property implies that only the first outcome of x∗ may be encoded as a loss; any 
following outcome x∗

t for t ≥ 2 must be encoded as either a strict gain, i.e., x∗
t > θ̂t−1(x

∗), or 
“neutral”, which we take to mean x∗ = θ̂t−1(x

∗).
t
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Property 2: x∗ has at most one strict gain. Next we show that there exists at most a single 
t ∈ {1, . . . , T } such that x∗

t represents a strict gain (i.e., x∗
t > θ̂t−1(x

∗)). We show this by con-
tradiction: suppose there exist periods t2 > t2 ≥ 1 such that x∗

t1
> θ̂t1−1(x

∗) and x∗
t2

> θ̂t2−1(x
∗). 

Since both of these outcomes are encoded as strict gains, Proposition 1 (along with our assump-
tion that σ 2/ρ2 < κL ⇔ t∗ < 1) implies that the relative weights that θ̂T (x∗) places on these 
outcomes are such that βT

t2
> βT

t1
> 0. Thus, transferring the gain in t1 to t2 does not alter the 

budget constraint yet increases the objective in (A.45). More specifically, consider a sequence x′
identical to x∗ except x′

t1
= x∗

t1
− ε and x′

t2
= x∗

t2
+ ε. If ε ≤ x∗

t1
− θ̂t1−1(x

∗), then this transfer 
does not change how any outcomes are encoded (relative to x∗), and thus induces a sequence of 
weights identical to their values under x∗. However, the transfer increases Objective (A.45) by (
βT

t2
− βT

t1

)
ε > 0, contradicting the optimality of x∗. Thus, x∗ has at most one outcome encoded 

as a strict gain.
Property 3: any strict gain must come in the final period. Next we show that if x∗ induces a 

strict gain, then it must come in period T . We again show this by way of contradiction. Suppose 
the single strict gain happens in period t < T . This implies that x∗ induces a single upward 
change in beliefs, which happens in period t , requiring x∗

t+1 = · · · = x∗
T = θ̂t (x

∗). Equation (7)
then implies

θ̂T (x∗) = θ̂t (x
∗) = αt (1 + κG)x∗

t + [1 − αT (1 + κG)]θ̂t−1(x
∗) (A.46)

Now consider x′ such that x′
i = x∗

i for all i ≤ t − 1, and x′
i = θ̂t−1(x

∗) for each i = t, . . . , T − 1
(note that if t = 1, we simply have x′

i = θ0 = 0 for all i = 1, . . . , T − 1). The budget constraint 
then implies x′

T = B −∑T −1
i=1 x′

t . Notice that x′ is such that θ̂T −1(x
′) = θ̂t−1(x

∗). Equation (7)
then implies that θ̂T (x′) = αT (1 + κG)x′

T + [1 − αT (1 + κG)]θ̂t−1(x
∗). From Equation (A.46), 

we then have θ̂T (x′) > θ̂T (x∗) ⇔
αT

[
x′
T − θ̂t−1(x

∗)
]

> αt

[
x∗
t − θ̂t−1(x

∗)
]
. (A.47)

Notice that the budget constraint for x∗ implies that x∗
t = B −∑t−1

i=1 x∗
i − (T − t)θ̂t (x

∗). Com-
bining this with the expression for θ̂t (x

∗) in Equation (A.46) yields

x∗
t = B −∑t−1

i=1 x∗
i − (T − t)[1 − αt (1 + κG)]θ̂t−1(x

∗)
1 + (T − t)αt (1 + κG)

. (A.48)

Similarly, the budget constraint for x′ implies

x′
T = B −

t−1∑
i=1

x∗
i − (T − t)θ̂t−1(x

∗). (A.49)

Substituting (A.48) and (A.49) into Condition (A.47) reveals that Condition (A.47) is equivalent 
to

αT >
αt

1 + (T − t)αt (1 + κG)
. (A.50)

Note that for any t < T , we have αT = αt/[1 + (T − t)αt ], and thus Condition (A.50) must 
hold given that the right-hand side is less than αt/[1 + (T − t)αt ] since κG > 0. Thus, θ̂T (x′) >
θ̂T (x∗), contradicting the optimality of x∗. Hence, if x∗ induces a strict gain, it must happen in 
period T .

Having established the three general properties of x∗ above, we now turn to precisely describ-
ing x∗. In doing so, it will be helpful to define three potential types of sequences:
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1. x ∈ RT is a final gain sequence if x1 = · · · = xT −1 = 0 and xT = B .
2. x ∈ RT is an initial loss sequence if x1 < 0 and x2 = · · · = xT = θ̂1.
3. x ∈ RT is a loss-gain sequence if x1 < 0, x2 = · · · = xT −1 = θ̂1, and xT > θ̂1.

Our three general properties of x∗ imply that x∗ must follow one of the sequence types defined 
above. We now derive which of these types is optimal as a function of B and T ; in doing so, we 
will separately handle the cases of B > 0 and B < 0.

First, note that in both cases (i.e., B ≶ 0), we will focus on the “loss-gain” sequence such 
that x1 drops beliefs to the threshold θ̄ < 0, meaning that the participation constraint binds. 
As we argue below, whenever the “loss-gain” sequence is optimal, it will be optimal to induce 
the biggest allowable loss (i.e., x1 lowers beliefs to θ̂1 = θ̄ ). Accordingly, define xLG such that 
xLG

1 = θ̄/(α1(1 + κL)), xLG
2 = · · · = xLG

T −1 = θ̄ , and xLG
T = B −∑T −1

i=1 xLG
i = B − [T − 2 −

1/α1(1 +κL)]θ̄ . For any B , the final expectation following xLG is θ̂T (xLG) = αT (1 +κG)xLG
T +

[1 − αT (1 + κG)]θ̄ , and thus

θ̂T (xLG) = αT (1 + κG)

[
B − θ̄

(
T − 1 + 1

α1(1 + κL)

)]
+ θ̄ . (A.51)

Case 1: Suppose B > 0 (as in the statement of the proposition). First note that x∗ cannot 
follow an “initial loss” sequence since this would imply a slack budget constraint given that 
B > 0. Thus, we must simply determine whether the optimal sequence is xLG or the “final 
gain” sequence. Let xFG denote the “final gain” sequence with xFG

1 = · · · = xFG
T −1 = 0 and 

xFG
T = B . Note that θ̂T (xFG) = αT (1 + κG)B . Comparing θ̂T (xFG) to Equation (A.51) yields 

xLG � xFG ⇔

αT (1 + κG)

(
T − 1 + 1

α1(1 + κL)

)
> 1, (A.52)

which amounts to

T > T̄ FG ≡
κL(1 + κG) + (κL − κG)σ 2

ρ2

κG(1 + κL)
. (A.53)

Taking T̄ = T̄ FG completes the proof of Proposition 7 as stated in the main text. Additionally, 
note that T̄ FG ≥ 1 and T̄ FG = 1 only when κL = κG; thus, since T ≥ 2, xLG is always optimal 
when B > 0 and loss aversion is sufficiently low.

Case 2: Suppose B < 0. First note that x∗ cannot follow a “final gain” sequence since this 
would imply that x∗ is not weakly increasing given that B < 0. Thus, we must simply determine 
whether the optimal sequence is xLG or the “initial loss” sequence. Let xIL denote the “initial 
loss” sequence with xIL

1 < 0 and xIL
2 = · · · = xIL

T = θ̂1. Note that θ̂T (xIL) = θ̂1(x
IL) = α1(1 +

κL)xIL
1 . From the budget constraint, xIL

1 = B − (T − 1)θ̂1(x
IL), and thus

θ̂T (xIL) = α1(1 + κL)

1 + (T − 1)α1(1 + κL)
B. (A.54)

Comparing Equations (A.54) and (A.51) yields xLG � xIL ⇔

αT (1 + κG)

(
T − 1 + 1

L
− g(T )

B

¯
)

> 1, (A.55)

α1(1 + κ ) θ
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where g(T ) ≡ [
1 + (T + σ 2/ρ2)/(κL(T − 1))

]−1
. While (A.55) tightly characterizes when 

xLG � xIL, we can also derive a useful sufficient condition for xLG � xIL using the proper-
ties of g(T ). First note that Equations (A.55) and (A.53) imply xLG � xIL ⇔

T > T̄ FG +
(

1 + κG

κG

)
g(T )B/θ̄ . (A.56)

Furthermore, note that (i) g(T ) ∈ (0, 1) for all T ; (ii) g(T ) is strictly increasing in T ; and (iii) 
g(T ) is bounded from above by κL/(1 + κL). Thus, xLG � xIL if

T > T̄ IL ≡ T̄ FG + κL(1 + κG)

κG(1 + κL)
B/θ̄ =

κL(1 + κG)(1 + B/θ̄) + (κL − κG)σ 2

ρ2

κG(1 + κL)
. (A.57)

Finally, we verify our claim above: if a “loss-gain” sequence is optimal, then it is optimal 
for x1 to lower beliefs to an extent that the participation constraint binds; i.e., θ̂1 = θ̄ . To see 
this, notice that θ̂T (xLG) is strictly increasing in θ̄ if and only if Condition (A.52) holds. Thus, 
when this condition holds, we have xLG � x̃ for any “loss-gain” sequence x̃ that induces θ̂1(x̃) =
· · · = θ̂T −1(x̃) = θ̃ > θ̄ . Now note that if B > 0 and xLG � xFG, then Condition (A.53) holds 
and thus Condition (A.52) holds. Furthermore, if B < 0 and xLG � xIL, then Condition (A.56)
holds, which also implies (A.52) holds. Thus, whenever the “loss-gain” sequence outperforms 
the other viable types of sequences, then the optimal variant of the “loss-gain” sequence involves 
the largest possible initial loss. �
Appendix B. Supplemental results

In this section, we provide formal details underlying some supplemental results noted in the 
main text.

B.1. Details on short-run belief updating

This section provides additional details on the short-run dynamics described in Section 3. In 
particular, we consider the relative weight that current expectations assign to a particular past 
outcome and describe how this weight varies over time. Standard Bayesian learning applied 
to our setting implies that expectations in period t weight each realized outcome identically. 
Misattribution, however, implies that the weight on any given outcome xτ , τ < t , will generically 
differ from that on any other outcome. Moreover, the way this relative weighting of xτ evolves as 
t advances—both in terms of magnitude and sign—can differ across early segments the horizon. 
As we describe below, these different “phases” of the horizon will be defined in terms of the 
particular dynamic patterns they induce on the relative weights of outcomes. The boundaries of 
these phases are then pinned down by the bias parameters, κG and κL, and the relative precision 
of the prior, σ 2/ρ2. We first derive and describe these various phases, and then conclude this 
section by describing some intuition on why these phases arise.

Consider some fixed outcome xτ in period τ ≥ 1. We will examine the weight that expecta-
tions formed in periods t ≥ τ place on xτ . From Lemma 1, θ̂t = αt

∑t
τ=1 βt

τ xτ + βt
0θ0. Hence, 

βt
τ is the relative weight that θ̂t places on xτ . Also from Lemma 1, βt

τ evolves in t according to

βt+1
τ = βt

τ [1 − αtκt+1]. (B.1)

Thus, the evolution of this weight—both in sign and magnitude—is completely determined by 
properties of the multiplicative term [1 − αtκt+1]. Since αt ∈ (0, 1) is decreasing in t , note that 
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once t is large enough that αtκt+1 < 1, then βt
τ is necessarily decreasing in t . This is the premise 

of the recency bias described in Proposition 1: the weight on xτ relative to other outcomes be-
comes smaller as τ fades further into the past.

For small values of t , however, the evolution of βt
τ might temporarily display other patterns. 

If there exist values of t such that 1 − αtκt+1 < 0, then βt
τ will alternate in sign until t is large 

enough to ensure that 1 − αtκt+1 > 0. Furthermore, it is possible that βt
τ briefly increases in t

among initial rounds in which 1 − αtκt+1 < −1.
Thus, the complete dynamics of βt

τ can be characterized by deriving (i) the time frame on 
which 1 − αtκt+1 < 0, which determines when the sign of the weight, sgn(βt

τ ), is oscillating 
versus constant in t ; and (ii) the time frame on which |1 − αtκt+1| ≶ 1, which determines when 
the magnitude of the weight, |βt

τ |, is increasing versus decreasing in t . Before deriving these 
time frames, it is worth noting that these conditions depend on κt+1; that is, whether the most 
recent outcome is encoded as a gain or a loss. Intuitively, the extent to which an early outcome xτ

influences current expectations through the encoded value of the most recent outcome, xt+1, can 
be smaller or larger depending on whether xt+1 is encoded as a gain or loss. For this reason, the 
relevant time frames will be defined, in part, based on the encoding of the most recent outcome.

The conditions above, along with the fact that αt = 1/(t + σ 2/ρ2), allow us to describe the 
boundaries of the various phases of the dynamics in terms of the underlying parameters. First, 
let tG∗ ≡ max

{�κG − σ 2/ρ2�,0
}

and tL∗ ≡ max
{�κL − σ 2/ρ2�,0

}
. These values describe when 

the weight on xτ will alternate signs or not as time advances. In particular, if xt+1 is encoded as a 
gain, then sgn(βt+1

τ ) = sgn(βt
τ ) if and only if t > tG∗ ; similarly, if xt+1 is encoded as a loss, then 

sgn(βt+1
τ ) = sgn(βt

τ ) if and only t > tL∗ . Note that tL∗ is intimately tied to our definition of t∗ in 
the main text: recall that t > t∗ if and only if θ̂t is necessarily increasing in θ̂t−1; this condition is 
identical to t > t∗L. Similarly, the case of t∗ < 1, which we consider for some results in the main 
text, is equivalent to t∗L = 0.

Second, let tG∗∗ ≡ max
{�κG/2 − σ 2/ρ2�,0

}
and let tL∗∗ ≡ max

{�κL/2 − σ 2/ρ2�,0
}
. These 

values describe when the weight on xτ will increase versus decrease as t advances to t + 1. In 
particular, if xt+1 is encoded as a gain, then |βt+1

τ | < |βt
τ | if and only if t > tG∗∗; similarly, if xt+1

is encoded as a loss, then |βt+1
τ | < |βt

τ | if and only t > tL∗∗.
The following lemma summarizes the discussion above, characterizing two types of phases 

within the updating process: (i) those in which the signs of the weights alternate or not, and (ii) 
those in which the magnitudes of the weights increase versus decrease.

Lemma B.1. Consider outcome xτ and t ≥ τ . The weight βt
τ that θ̂t assigns to xτ has the fol-

lowing properties:

1. The direction of the weight, sgn(βt
τ ), evolves as follows:

(a) Deterministic oscillation phase: if t < tG∗ , then sgn(βt+1
τ ) �= sgn(βt

τ ) and hence the di-
rectional effect of xτ on beliefs alternates.

(b) Stochastic oscillation phase: if t ∈ (tG∗ , tL∗ ), then sgn(βt+1
τ ) �= sgn(βt

τ ) if κt+1 = κL and 
sgn(βt+1

τ ) = sgn(βt
τ ) if κt+1 = κG. Hence, the directional effect of xτ on beliefs alter-

nates only following a loss.
(c) Deterministic persistence phase: if t > tL∗ , then sgn(βt+1

τ ) = sgn(βt
τ ) and hence the 

directional effect of xτ on beliefs remains constant.
2. The magnitude of the weight, |βt

τ |, evolves as follows:
(a) Deterministic amplification phase: if t < tG∗∗, then |βt+1

τ | > |βt
τ | and hence the weight 

on xτ will grow in magnitude.
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(b) Stochastic amplification-decay phase: if t ∈ (tG∗∗, tL∗∗), then |βt+1
τ | > |βt

τ | if κt+1 = κL

and |βt+1
τ | < |βt

τ | if κt+1 = κG. Hence, the weight on xτ will grow in magnitude only 
following a loss.

(c) Deterministic decay phase: if t > tL∗∗, then |βt+1
τ | < |βt

τ | and hence the weight on xτ will 
diminish in magnitude.

It is important to note that the various phases above emerge only when the thresholds tL∗ , etc. 
are non-zero. If all of them are zero—which happens whenever κL < σ 2/ρ2—then the relative 
weighting of every outcome is always positive and always decreasing in t . Hence, these varied 
phases of the dynamics exist only when κL and κG are sufficiently large relative to σ 2/ρ2. 
Furthermore, it is possible that tL∗ ≥ 1 and tL∗∗ = 0, but tL∗ = 0 necessarily implies that tL∗∗ = 0. 
Thus, a phase in which weights oscillate in sign is more likely to occur than one in which weights 
amplify in magnitude: the set of parameters that generate temporarily oscillating weights is a 
strict superset of those that generate temporarily amplifying weights.

Fig. 2 depicts the phases described in Lemma B.1 as a function of time. The unambiguous 
relationships between the various thresholds in Lemma B.1 give rise to a relatively clear picture 
of how weights evolve when there are distinct phases to the dynamics (i.e., when κL > σ 2/ρ2). 
Namely, we must have tG∗∗ ≤ tL∗∗, tG∗ ≤ tL∗ , tG∗∗ ≤ tG∗ , and tL∗∗ ≤ tL∗ . Thus, the various phases of 
the dynamics will unfold (roughly) as in Fig. 2. The regions of the horizon labeled above the 
timeline describe how the magnitudes of the weights evolve, while those labeled below describe 
how their signs evolve.29 The intersections of these regions provide a complete picture of how 
the weight βt

τ on a past outcome xτ evolves as time progresses.
In the main text, we sometimes restrict focus to cases where t > tL∗ (e.g., Proposition 1). The 

reason is twofold. First, this phase of the dynamics always exists, regardless of the parameter 
values. Furthermore, it is persistent in the sense that, once this phase begins, it will continue for 
the remainder of time. Thus, patterns in beliefs that occur beyond tL∗ (namely, a recency bias), 
can be viewed as a robust implication of misattribution, while patterns that may occur prior to tL∗
only emerge under particular parameter values and are fleeting when they do.30

We now provide intuition for why weights might oscillate in sign or increase in magnitude 
early in the learning process.

Intuition for why the sign of βt
τ can oscillate in t: As xτ increases, it will increase expectations 

in the subsequent round and thus decrease the encoded outcome in that round. In early rounds 
where posteriors are decreasing in the prior, the positive effect of xτ on θ̂τ will have an overall 
negative effect on θ̂τ+1. (An analogous intuition emerges as xτ decreases, again leading to an 
inverse relationship between xτ and θ̂τ+1.) Extending this logic forward, the effect of xτ has an 
alternating effect on subsequent periods: if xτ has a negative effect on θ̂τ+1, then it will have 
a positive effect on θ̂τ+2 whenever θ̂τ+2 is decreasing θ̂τ+1, and so on. This alternating logic 
will hold up to the highest round t such that θ̂t is decreasing in θ̂t−1. This “highest round” is 
precisely the definition of t∗G and t∗L—these are the latest rounds in which θ̂t is decreasing in θ̂t−1

conditional on xt being encoded as a gain or loss, respectively. As such, the weight on xτ can 
oscillate in sign up to these thresholds, but not beyond.

29 The relationship between tG∗ and tL∗∗ is ambiguous without further specifying the parameter values. The following 
figure assumes tG∗ > tL∗∗ , but this relationship would flip with sufficiently stronger loss aversion.
30 In fact, a recency bias starts to emerge as soon as t > tL∗∗. At that point, |βt

τ | is necessarily decreasing in t for the 
remainder of the horizon even though the sign of βt

τ can still change up until tL∗ > tL∗∗.
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Increasing
Magnitudes

Increasing 
Magnitudes 

Only After Loss
Decreasing
Magnitudes

Oscillating Signs Oscillating Signs 
Only After Loss

Constant Signs

t = 1 tG∗∗ tL∗∗

tG∗ tL∗

Fig. 2. The various phases of the evolving beliefs of a misattributor. The text above (below) the timeline describes how 
the magnitude (sign) of the weight on a past outcome evolves over time.

Intuition for why βt
τ can increase in magnitude: Note that this pattern only arises when 

weights are oscillating in sign, meaning that expectations in period t − 1 have a negative ef-
fect on expectations in period t . Given this, the bias in the encoded outcome in a previous round 
τ tends to have a compounding effect on the bias in later rounds. To see this, suppose xτ comes 
as a gain and x̂τ is biased upward. When the next outcome comes as a loss, the upward bias in 
x̂τ+1 makes that loss more severe, and thus the bias in x̂τ+1 is larger when the bias in x̂τ is larger. 
In this way, the effect of xτ on final beliefs is amplified. And this amplification effect can extend 
over time: amplifying the downward bias in x̂τ+1 will cause a gain in τ + 2 to by exaggerated 
upward by a greater extent, and so on. However, this amplification effect can only emerge in 
the early portion of the horizon in which the current outcome has a large effect on expectations, 
since this large effect is necessary for x̂τ to have a large impact on x̂τ+1, and so on. Thus, once 
enough outcomes have accumulated for the most recent one to have little individual impact on 
expectations, the amplification effect will cease. This logic underlies the threshold values tG∗∗ and 
tL∗∗ in Lemma B.1.

B.2. Variance of encoded outcomes and mean beliefs

In this section, we consider the variance of a misattributor’s encoded outcomes and the vari-
ance of her mean beliefs.

We first show that, conditional on θ̂t−1, the variance of the encoded outcome, x̂t , is greater 
than the variance of the true outcome, xt . By considering θ̂t−1 = θ̂∞, where θ̂∞ is the steady-
state value defined in Proposition 4, this result further implies that the distribution of encoded 
outcomes in the steady state will have greater variance than the true distribution of outcomes, as 
noted in the main text.

Lemma B.2. Conditional on any θ̂t−1 ∈ R, Var(x̂t ) > Var(xt ).

Proof of Lemma B.2. Given θ̂t−1, we have x̂t = xt + κt (xt − θ̂t−1). Define the function 
ñ(x|θ̂t−1) as follows: ñ(x|θ̂t−1) = κG(x − θ̂t−1) if x ≥ θ̂t−1 and ñ(x|θ̂t−1) = κL(x − θ̂t−1)

if x < θ̂t−1. Hence, Var(x̂t ) = Var(xt ) + Var(ñ(xt |θ̂t−1)) + 2Cov(xt , ñ(xt |θ̂t−1)). It thus suf-
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fices to show that Cov(xt , ñ(xt |θ̂t−1)) ≥ 0. Note that ñ(x|θ̂t−1) is strictly increasing in x. Thus, 
Cov(xt , ñ(xt |θ̂t−1)) ≥ 0 since the covariance of a random variable and an increasing function of 
that random variable is non-negative (Thorisson, 1995) provided both are square-integrable (as 
they are here). �

Next, we show that a misattributor’s mean beliefs are excessively variable. To make this point 
succinctly, we show that, conditional on (x1, . . . , xt−1), the variance of θ̂t exceeds the variance 
of the Bayesian mean belief, θt . Note that Var(θ̂t ) = Var(αt x̂t + (1 − αt )θ̂t−1) = α2

t Var(x̂t ) since 
θ̂t−1 is constant conditional on (x1, . . . , xt−1). Similarly, Var(θt ) = α2

t Var(xt ). Thus, Var(θ̂t ) >
Var(θt ) ⇔ Var(x̂t ) > Var(xt ), which holds due to Lemma B.2.

B.3. Extension with uncertainty over the variance of outcomes

In our baseline model, the outcome in each round is distributed xt ∼ N(θ, σ 2), and the agent 
attempts to learn θ . In this appendix, we sketch an extension where the agent is initially uncertain 
about both θ and σ 2. As in the main text, we analyze the agent’s distorted beliefs when she uses 
encoded outcomes (Equation (4)) in place of true outcomes when updating her beliefs about these 
parameters. Misattribution in this case leads to long-run beliefs that overestimate σ 2 (regardless 
of the value of λ) and underestimate θ (when λ > 1, as in Proposition 4).

We focus on a familiar class of prior beliefs that admit tractable posteriors. Specifically, the 
agent begins with an inverse-gamma prior over the variance of outcomes: σ 2 ∼ IG(a0, b0).31

As in the main text, we continue to assume that the agent has normally-distributed priors over 
θ : conditional on σ 2, the agent initially believes θ ∼ N(θ0, σ 2/v0), where v0 > 0 is a scaling 
parameter known by the agent. By considering v0 = σ 2/ρ2 for some constant ρ > 0, the agent 
initially believes θ ∼ N(θ0, ρ2) exactly as in our benchmark model in the main text.

We now describe the dynamics of the agent’s beliefs, starting from the first period. Following 
our model of misattribution in the main text, we maintain that the agent’s reference point in 
period t is her expectation of xt . Given the priors above, her marginal belief over θ initially 
follows a Student’s t-distribution with mean θ0. Thus, her reference point in t = 1 is θ0, and she 
therefore encodes a value x̂1 exactly as described in Equation (4) given this expectation.

Computing the agent’s updated beliefs given her encoded outcome is relatively straightfor-
ward. Since the agent’s prior and posterior distributions are conjugate distributions, her posterior 
beliefs over σ 2 and θ are also inverse-gamma and normal, respectively, but with parameters 
that update as follows (see, e.g., Murphy, 2007). For any t , let Ŝt ≡∑t

i=1 x̂i denote the sum of 
encoded outcomes through period t ; we then have:

θ̂t = v0θ0 + Ŝt

v0 + t
, (B.2)

vt = v0 + t, (B.3)

at = a0 + t

2
, (B.4)

bt = b0 + 1

2

t∑
i=1

(x̂i − Ŝt /t)2 + 1

2

v0t

v0 + t
(Ŝt /t − θ0)

2. (B.5)

31 The inverse-gamma PDF is fIG(y|a, b) = ba(1/y)a+1 exp(−b/y)/�(a), where � denotes the gamma function. 
Parameters a0 > 0 and b0 > 0 dictate the shape and scale of the distribution, respectively.
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Furthermore, the agent’s marginal belief over θt after t rounds is again a Student’s t-distribution 
with mean θ̂t . Hence, in any period t , θ̂t−1 is the agent’s expectation of xt and thus θ̂t−1 is her 
reference point. This means that the process of encoded outcomes in this extension follows the 
same process as described in Equation (4), except θ̂t−1 is given by Equation (B.2).

Accordingly, the dynamic process governing θ̂t described above is essentially identical to the 
process of biased mean beliefs considered in the main text, and thus the convergence argument 
from Proposition 4 applies here. To see this explicitly, note that by defining α̃t ≡ 1/(v0 + t), we 
can write the updating rule for θ̂t in Equation (B.2) as θ̂t = α̃t x̂t + (1 − α̃t )θ̂t−1. Notice that α̃t

has the same functional form as the αt from the main text; in fact, the two are identical when 
v0 = σ 2/ρ2. Additionally, conditional on θ̂t−1, x̂t is defined the same way here as in the main 
text. As such, the dynamic process for θ̂t here is equivalent to the one presented in Equation 
(A.23) in the proof of Proposition 4 (up to the irrelevant scaling constant v0). The convergence 
argument in that proof (based on Theorem 5.2.1. of Kushner and Yin, 2003) can therefore be 
applied here to the process of θ̂t . Thus, conditional on θ and σ 2, the limiting value of θ̂t is 
identical to the value θ̂∞ described in Proposition 4.

It is worth noting a key reason that beliefs about θ in this extension converge to the same 
value as in the main text. Given our assumed class of priors over σ 2 and θ , the agent’s beliefs 
about σ 2 do not influence her expectation of xt in any given round—this expectation is entirely 
determined by θ̂t , which is a simple weighted average of the encoded outcomes. This implies that 
the agent’s beliefs about σ 2 do not influence her encoded outcomes. Thus, the dynamic feedback 
process linking the agent’s expectations and her encoded outcomes is independent of the agent’s 
uncertainty over σ 2, and hence this process plays out similarly to the case in which σ 2 is known.

Finally, we can derive the agent’s perceived variance by examining the agent’s limiting belief 
over σ 2. After t rounds, the agent’s expectation of σ 2 is bt/(at − 1), which—using Equations 
(B.4) and (B.5)—has the same limiting value as limt→∞ 1

t

∑t
i=1(x̂i − Ŝt /t)2. Since θ̂t con-

verges a.s. to the value θ̂∞ from Proposition 4 (as argued immediately above), it follows that 
limt→∞ 1

t

∑t
i=1(x̂i − Ŝt /t)2 = limt→∞ 1

t

∑t
i=1(x̂i − θ̂∞)2. Note that this value is equal to the 

theoretical variance of encoded outcomes at the steady-state mean belief, θ̂∞. By Lemma B.2, 
this value strictly exceeds σ 2 under misattribution, regardless of the underlying parameters. 
Hence, the agent’s expectation of σ 2 converges to a long-run value that exaggerates the vari-
ance of outcomes.

B.4. The optimal walk-down of expectations

Consider the first application presented in Section 5: the designer aims to maximize the agent’s 
posterior expectation of θ following a single outcome, x1, and the designer has the opportunity 
to lower the agent’s expectations prior to the realization of x1. The designer thus chooses c ≥ 0
to maximize

E[θ̂1] = α1E[x̂1(c)] + (1 − α1)
(
θ0 − c

)
, (B.6)

where E[·] is w.r.t. the designer’s prior belief that θ ∼ N(θ0, ρ2), and x̂1(c) is the agent’s misen-
coded value of x1 conditional on holding prior expectation θ0−c. We also impose a “participation 
constraint” corresponding to a lower bound on the induced prior expectation; namely, we require 
θ0 − c ≥ θ̄ . Let c∗ denote the value of c that maximizes Objective (B.6) subject to c ∈ [0, θ0 − θ̄ ].

Proposition B.1. Consider the setup above. The designer will optimally reduce the agent’s ex-
pectations by c∗ such that
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c∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if σ 2

ρ2 > κL+κG

2 ,

ν

∣∣∣∣∣�−1

(
σ2

ρ2 −κG

κL−κG

)∣∣∣∣∣ if σ 2

ρ2 ∈
[
κG, κL+κG

2

]
and ν

∣∣∣∣∣�−1

(
σ2

ρ2 −κG

κL−κG

)∣∣∣∣∣≤ θ0 − θ̄ ,

θ0 − θ̄ if σ 2

ρ2 < κG.

Thus, lowering the agent’s prior expectation is never optimal in environments where the rel-
ative precision of her prior, σ 2/ρ2, is high. However, once this precision is sufficiently low, it 
is optimal to walk down her expectations, and the appropriate amount to do so increases as the 
precision of the prior decreases.

Proof. [Proof of Proposition B.1] To derive c∗, we first derive E[x̂1(c)]. Let ν = √ρ2 + σ 2. 
From the designer’s perspective, x1 ∼ N(θ0, ν2). Since x̂1 = x1 + κ1(x1 − (θ0 − c)) where κ1 ≡
κG1{x1 > θ0 − c} + κL1{x1 < θ0 − c}, we have

E[x̂1(c)] = θ0 + κG

[
1 − �

((
(θ0 − c) − θ0

)
/ν

)]
E
[
x1 − (θ0 − c)|x ≥ θ0 − c

]
+ κL�

((
(θ0 − c) − θ

)
/ν

)
E
[
x1 − (θ0 − c0)|x < θ0 − c

]
. (B.7)

Letting z(c) ≡ −c/ν and letting Z be a standard normal random variable, the above reduces to:

E[x̂1(c)] = θ0 + νκG
[
1 − �(z(c))

]
E
[
Z − z(c)|Z ≥ z(c)

]
+νκL�(z(c))E

[
Z − z(c)|Z < z(c)

]
= θ0 − νκG [(1 − �(z(c)))z(c) − φ(z(c))] − νκL [�(z(c))z(c) + φ(z(c))]

= θ0 + κGc − ν(κL − κG)G(c), (B.8)

where G(c) ≡ [�(z(c))z(c) + φ(z(c))]. Thus, G′(c) = −�(z(c))/ν, and hence

∂

∂c
E[x̂1(c)] = κG + (κL − κG)�(−c/ν) > 0. (B.9)

Given the objective in Equation (B.6), the marginal benefit of decreasing expectations is

α1
∂

∂c
E[x̂1(c)] = ρ2

ρ2 + σ 2

(
κG + (κL − κG)�

(
−c√

ρ2 + σ 2

))
> 0, (B.10)

where we’ve used the fact that ν =√ρ2 + σ 2; the marginal cost is (1 − α1) = σ 2/(ρ2 + σ 2). 
Hence, the first-order condition for c∗ is

ρ2

ρ2 + σ 2

(
κG + (κL − κG)�

(
−c√

ρ2 + σ 2

))
= σ 2

ρ2 + σ 2 . (B.11)

The SOC for a maximum holds since −(κL − κG)φ
(
−c/

√
ρ2 + σ 2

)
< 0, and hence an interior 

solution for c∗ is given by:

c∗ = −
√

ρ2 + σ 2�−1

⎛⎝ σ 2

ρ2 − κG

κL − κG

⎞⎠ . (B.12)
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Note that the expression for c∗ above can sometimes be undefined or violate the constraint that 
c cannot be negative. This happens whenever ( σ 2

ρ2 − κG)/(κL − κG) /∈ (0, 1/2). In such cases, 
we have a corner solution. Thus, the complete solution for c∗ is as follows:

c∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if σ 2

ρ2 > κL+κG

2 ,

−ν�−1

(
σ2

ρ2 −κG

κL−κG

)
if σ 2

ρ2 ∈
[
κG, κL+κG

2

]
and − ν�−1

(
σ2

ρ2 −κG

κL−κG

)
≤ θ0 − θ̄ ,

θ0 − θ̄ if σ 2

ρ2 < κG.

�
B.5. The optimal ordering of outcomes for imprecise priors

Proposition 6 shows that if prior beliefs are relatively precise (i.e., σ 2/ρ2 > κL), then the 
misattributor’s posterior expectation following a fixed set of outcomes is the highest when those 
outcomes are experienced in an increasing order. The following corollary shows that this result 
directly extends for any value of σ 2/ρ2 when T = 2 so long as at last one of the outcomes beats 
initial expectations.

Corollary 1. Consider any a, b ∈ R such that a > b. Let θ̂ i
2 denote the misattributor’s posterior 

expectation following the increasing sequence (b, a), and let θ̂ d
2 denote it following the decreas-

ing sequence (a, b). If a > θ0, then θ̂ i
2 > θ̂d

2 .

Proof of Corollary 1. Consider the proof of Lemma A.2. The relevant cases given a > θ0 are 
Cases 1 and 3. However, in both of these cases, we have θ̂ i

2 > θ̂d
2 without assuming anything 

beyond a > b and a > θ0. �
Providing a full characterization of the optimal sequencing of outcomes when σ 2/ρ2 < κL

requires arranging outcomes according to Lemma 1 so that the largest outcomes get the largest 
weight. Although this is mathematically simple, it does not provide much insight; hence, we 
focus on T = 2 in Corollary 1 to deliver a crisp result.

Appendix C. Model extensions

C.1. Misattribution and personal equilibrium

In our baseline model, the misattributing agent faces an exogenous distribution of outcomes. 
To handle environments where the agent’s actions influence the distribution of data, we must 
further specify how the agent’s strategy influences her reference points, since this determines 
how she (mis)encodes outcomes. Extending the model is relatively straightforward when the 
agent’s current action pins down her reference point.

To motivate this extension, consider a setting where the agent is learning about two normally-
distributed prospects with unknown means, θA and θB . In each period, she must choose between 
a random draw from either A or B . A natural way to model this setting follows Kőszegi and 
Rabin’s (2007) notion of “choice-acclimating personal equilibrium”, but allows for the agent to 
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hold biased expectations and make choices with respect to those biased beliefs. Following this 
approach, the agent’s current choice determines her reference point for that period. For instance, 
if the agent chooses prospect A today, then her reference point is what she (currently) expects to 
earn from prospect A. As in Kőszegi and Rabin (2007), the agent understands that her actions will 
determine her reference points and accordingly takes actions to maximize her expected utility 
given her (potentially biased) beliefs about the two prospects.

We now describe this extension more formally. Each period t begins with a decision phase in 
which the agent selects an action at ∈ A, where A is a compact subset of R. As in the baseline 
model, the agent is initially uncertain about a distributional parameter θ ∈ RK for some finite 
K ≥ 1. Conditional on the parameter θ and chosen action at , outcome xt ∈ R is distributed ac-
cording to F(·|θ, at ). For an example similar to our baseline model, imagine the agent is learning 
about N independent prospects; each prospect n ∈A = {1, . . . , N} has normally distributed out-
comes with mean θn and a known variance. Then θ = (θ1, . . . , θN), and F(·|θ, n) is a normal 
distribution with mean θn.

The agent begins with a prior π0 over θ , and updates her beliefs each round conditional on 
her action and its resulting (mis)encoded outcome. To formalize the encoded outcome, let πt−1
denote the agent’s belief over θ entering round t . Conditional on choice at , her expected out-
come is Êt−1[xt |at ] ≡

∫∞
−∞ xdF̂t−1(x|at ) where F̂t−1(x|at ) ≡

∫
F(x|θ, at )dπt−1(θ), and thus 

the encoded outcome is analogous to Equation (4), except Êt−1[xt |at ] takes the place of θ̂t−1:

x̂t =
{

xt + κG
(
xt − Êt−1[xt |at ]

)
if xt ≥ Êt−1[xt |at ]

xt + κL
(
xt − Êt−1[xt |at ]

)
if xt < Êt−1[xt |at ].

(C.1)

In the example above with normal distributions, the agent’s reference point in a round in which 
she chooses prospect n is simply her current estimate of θn.

Under this approach, the agent then takes an action in each round to maximize her expected 
utility (according to her true utility function) conditional on her erroneous beliefs. We find it 
natural to assume the agent chooses an action under the presumption that she encodes outcomes 
correctly; that is, she is naive about her attribution bias. We find it similarly natural that the 
agent makes decisions with respect to her true utility function given that attribution bias is a 
retrospective error. More generally, we can think of the concept above as a biased-belief personal 
equilibrium, as it extends Kősezgi and Rabin’s notion of personal equilibrium to the case where 
the agent holds erroneous expectations.

It is wroth noting that many of our results from the main text apply in this extension so long as 
outcomes from different actions are independent of one another. This follows from the assump-
tion that the reference point corresponds to expectations about the chosen action: if outcomes 
are also independent across actions, then updating about one action does not influence updating 
about another. For instance, in the example above with normal distributions, beliefs about the 
mean of each prospect would exhibit the precise properties described in Sections 3 and 4 along 
the sequence of periods in which that prospect is chosen.

C.2. Misattribution with multiple dimensions

Here, we discuss how to extend our model to settings where consumption utility is mul-
tidimensional. This extension requires an additional assumption on how surprises along one 
dimension influence encoded outcomes on other dimensions. While there are a range of plausible 
assumptions, we assume that the encoded outcome on one dimension depends entirely on sen-
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sations of elation or disappointment felt on that dimension. We propose this specific assumption 
to eliminate a potential degree of freedom and to provide a starting place for potential empirical 
exploration.

Following Kőszegi and Rabin’s (2006) multidimensional model, suppose consumption vector 
c ∈ RK generates consumption utility x ∈ RK that is additively separable across K dimen-
sions. Let x = (x1, . . . , xK) with xk ∈ R denoting consumption utility on dimension k, and 
let F̂ denote the agent’s subjective CDF over x. Define the vector θ̂ = (θ̂1, . . . , θ̂K) such that 
element θ̂ k denotes the expected consumption utility on dimension k according to F̂ . The per-
son’s total utility from x given reference distribution F̂ is then u(x|θ̂ ) =∑K

k=1 uk(x
k|θ̂ k), where 

uk(x
k|θ̂ k) ≡ xk + ηn(xk|θ̂ k) is the total utility along dimension k and n(xk|θ̂ k) is the unidimen-

sional gain-loss utility assumed in our baseline model (Equation (1)).
Our notion of misattribution generally extends to this setting: following outcome x and total 

utility level u = u(x|θ̂ ), a misattributor encodes a distorted value x̂ that would have generated 
the same total utility level u if she instead had a utility function û(·|θ̂ ) that weights each gain-
loss term, n(·|θ̂ k), by η̂ ∈ [0, η). That is, the person encodes x̂ that solves û(x̂|θ̂ ) = u(x|θ̂ ) as 
in Equation (3). To further pin down the misencoded outcome on each dimension, we assume 
that each x̂k depends solely on gains and losses experienced on dimension k: x̂k is defined by 
ûk(x̂

k|θ̂ k) = x̂k + η̂n(x̂k|θ̂ k) = xk + ηn(xk|θ̂ k) = uk(x
k|θ̂ k). While we suspect that the more 

general psychology of “attribution bias” may lead to across-dimension misencoding (see, e.g., 
discussions in Haggag et al., 2019), we believe this formulation provides a tractable stepping 
stone for future research.
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