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Abstract

This paper examines errors in learning that arise when an agent’s perception of outcomes depends
on how they contrast with expectations. We consider an agent who neglects how the sensation
of elation or disappointment relative to expectations contributes to her overall utility, and who
wrongly attributes this component of her utility to the intrinsic value of an outcome. Our model
helps explain seemingly disparate evidence on belief updating in dynamic environments. We
show that misattribution of reference dependence generates a contrast effect in sequential eval-
uations. This leads to a recency bias: the misattributor’s beliefs over-weight recent experiences
and under-weight earlier ones. Accordingly, a misattributor forms inflated expectations after ex-
periencing a series of outcomes arranged in an increasing order. Turning to long-run beliefs, a
loss averse misattributor will grow unduly pessimistic and undervalue prospects in proportion to
their variability, leading the decision maker to reject some risky-but-optimal options. Finally, we
highlight how misattribution introduces incentives for expectations management, and we show
that a misattributing principal will overestimate the ability of a sophisticated party who initially
suppresses expectations so as to exceed them thereafter.
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1 Introduction

Learning from personal experience guides a wide range of economic decisions—it shapes, for in-
stance, our preferences over consumer products, adoption of new technologies, and evaluations of
others. But our ability to correctly learn from experience is challenged by the fact that our expecta-
tions often color the way we perceive events.1 In this paper, we study how a person’s impressions and
memories are distorted when she inadvertently contrasts experiences against her expectations. Our
model builds from the well-known idea that people evaluate experiences in both absolute and relative
terms: the utility from an outcome depends on both its “intrinsic value” and how that value compares
to expectations (e.g., Kahneman and Tversky 1979; Bell 1985; Kőszegi and Rabin 2006). When
trying to learn the intrinsic value of an outcome, a person must distinguish this intrinsic (“reference-
free”) value from the sensation of elation or disappointment it generated. Research in psychology,
however, suggests that people fail to appreciate how circumstantial factors—such as expectations—
shape their experiences, and in doing so may incorrectly attribute sensations of surprise (i.e., elation
or disappointment) to their intrinsic tastes.2

To illustrate, imagine a consumer trying a new service for the first time (e.g., a traveler flying on
a new airline, or a new shopper on eBay as in the related empirical paper by Backus et al. 2018). If
her experience falls short of expectations, she will feel unhappy both because of the subpar service
and because this came as a negative surprise. A rational consumer will understand that part of her
bad experience derived simply from her high expectations. A less introspective consumer, however,
might misattribute this disappointment to the underlying quality of the service, and consequently
underestimate how much she would enjoy that service in the future.3 For another example, consider a

1Other social sciences have long explored how prior expectations can alter a person’s evaluation and memory of
an experience (see, e.g., Wilson and Gilbert 2003 for a review in psychology). For instance, political scientists have
argued that discrepancies between a politician’s performance and citizens’ expectations play a key role in how citizens
perceive that politician (see, e.g., Patterson et al. 1969; Kimball and Patterson 1997; Waterman et al. 1999). Likewise,
marketing has emphasized the role of expectations on perceived quality or service (see, e.g., seminal works from Oliver
1977, 1980; and Boulding et al. 1993). This research has highlighted that when outcomes deviate from expectations,
a person might either assimilate that experience—interpret it in favor of their current beliefs—or contrast it—interpret
the experience against their expectations. Models of confirmation bias (e.g., Rabin and Schrag 1999; Fryer, Harms, and
Jackson 2018) explore the former; in this paper, we propose a mechanism that captures the latter. Finding support for
both hypotheses, Geers and Lassiter (1999) provide the following guidance for when to expect contrasts: “[I]n situations
in which individuals are very motivated to gain a great deal of information (e.g., highly unpredictable situations, or
situations with a great deal of subjective importance or personal interest), they should be more likely to employ finer rates
of unitization [. . . ] which should increase the chances for contrast effects in affective experience.” We briefly discuss in
Section 3 how both contrast and assimilation can peacefully coexist.

2Our model is inspired by a broader literature on other forms of misattribution demonstrating a tendency to wrongly
attribute extraneous situational factors to the inherent characteristics of a good or person. For instance, Haggag and
Pope (2018) demonstrate that, when assessing the value of a good, people have difficulty separating state-dependent
utility caused by temporary circumstances, such as thirst, from the quality of the good. Dutton and Aron (1974) find that
subjects who form opinions about people they meet for the first time exhibit judgments dependent on unrelated factors
(e.g., their current state of fear or excitement). We discuss this literature at greater length in Section 2.

3Backus et al. (2018) find that new eBay users with higher expectations of winning an auction (measured by time
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researcher collaborating with a new colleague. If the colleague contributes more than expected to the
project, the researcher will feel happy both because of the project’s progress and because this came
as a pleasant surprise. If she misattributes this latter feeling to her partner’s performance, she may
recall an exaggerated perception of his contribution. As these examples suggest, surprises may distort
perceived outcomes: exceeding expectations inflates perceptions, and falling short deflates them.

In this paper, we study an agent who attempts to learn the average payoff of a prospect—e.g., the
average quality of a consumer service or a worker’s ability—over time. After each outcome, the agent
misremembers how the sensation of positive or negative surprise influenced her experienced utility
and wrongly attributes this sensation to the underlying quality of that outcome. This mechanism,
a form of attribution bias, provides an intuitive channel through which reference points influence
memory. Furthermore, as the agent experiences outcomes over time, her perceptions become interde-
pendent: a misinterpretation of today’s outcome causes the agent to form biased expectations about
tomorrow, and these biased expectations further shape the interpretation of the following outcome.
We show how this process explains well-documented errors in beliefs like contrast effects and a re-
cency bias. Moreover, our mechanism sheds light on lesser-discussed biases such as the fact that
people form the most optimistic impressions after experiencing outcomes ordered in an increasing
sequence. We further characterize how misattribution interacts with loss aversion to distort long-
run learning. Finally, we demonstrate how misattribution (i) introduces incentives for expectations
management and (ii) generates a dynamic sunk-cost fallacy.

We introduce the baseline model in Section 2. We consider a dynamic setting where in each period
the agent realizes an outcome of a prospect with an unknown distribution. Based on this outcome,
the agent experiences utility composed of two parts: consumption utility—which depends solely on
the outcome—and reference-dependent utility, which depends on the difference between her realized
consumption utility and what she expected. She then updates her beliefs about the distribution of
outcomes based on her total utility. To preview our formulation of misattribution, suppose utility
from outcome x ∈ R when expecting θ̂ ∈ R is u(x|θ̂) = x+ ηn(x|θ̂), where the reference-dependent
component n(x|θ̂) is proportional to the difference between x and θ̂ and parameter η > 0 measures
the weight that elation and disappointment carry on total utility. We assume that a misattributor infers
from her past utility as if she weighted these sensations by a diminished factor η̂ < η; that is, she
correctly recalls her total utility, but misremembers the extent to which elation or disappointment
contributed to this total. She thus infers a distorted value of each prior outcome. More specifically,
when x surpasses expectations, she infers a value x̂ > x; when x falls short, she infers x̂ < x. The
agent then updates her beliefs about the distribution of outcomes according to Bayes’ Rule as if x̂

spent in the lead) are more likely to quit using the platform if they unexpectedly lose their first auction. Specifically,
bidders who surprisingly lose near the end of the auction are six percentage points more likely to exit the platform for
every additional day they previously held the lead. This suggests that misattribution of disappointment can have important
consequences for customer perceptions and retention, independent of material outcomes.
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truly occurred.
This simple model captures several well-known ideas. First, it captures the basic concept of dis-

confirmation: an outcome that deviates from expectations is remembered as deviating by more than it
really did. Second, our model provides an explanation that connects the “positive-negative asymmetry
effect”—the notion that people’s beliefs respond differentially to good and bad news—to reference-
dependent preferences. If the misattributor is loss averse, then disappointments distort beliefs by
more than commensurate elations, leading to an asymmetry in updating from good versus bad news.4

Third, misattribution generates sequential contrast effects: the current outcome appears better the
worse was the previous one.5

We begin our primary analyses in Section 3 by examining how the order in which a misattribu-
tor experiences outcomes influences her perceived value of the prospect. Consider, for example, a
manager learning about the ability of a newly-hired employee whose performance determines the
manager’s payoffs. Even when the employee’s performance is i.i.d., misattribution can generate a
recency bias—recent outcomes influence beliefs more than older ones.6 This stems from the contrast
effect noted above: high initial outcomes raise expectations and cause later outcomes to be judged
more harshly, while low initial outcomes lower expectations and cause later outcomes to be judged
more favorably. We provide comparative statics on the strength of signals and priors that predict
when a recency bias emerges. We also show that a misattributor is most optimistic about a prospect
when, ceteris paribus, its outcomes are arranged in an improving order. For instance, fixing the total
amount of work the employee completes, the manager is most optimistic about his ability when each
of his performances is better than the last.

We extend this analysis in Section 4, where we demonstrate how misattribution distorts beliefs
in the long-run. The interplay between beliefs and perceived outcomes can prevent a misattributor
from reaching correct expectations despite ample experience. However, the agent will nevertheless
converge to stable long-run beliefs. We characterize these steady-state beliefs and show that a mis-

4Baumeister et al. (2001) provide a succint definition of the positive-negative assymetry effect: “[E]vents that are
negatively valenced (e.g., losing money, being abandoned by friends, and receiving criticism) will have a greater impact
on the individual than positively valenced events of the same type (e.g., winning money, gaining friends, and receiving
praise). . . . This is probably most true in the field of impression formation, in which the positive-negative asymmetry
effect has been repeatedly confirmed.” While loss aversion (as in Kahneman and Tversky 1979) captures the notion that
potential losses loom large in preferences, we provide a mechanism for why past losses loom large in both memory and
subsequent forecasts.

5Sequential contrast effects have been documented in numerous settings, including sequential evaluations made by
teachers (Bhargava 2007) and speed daters (Bhargava and Fisman 2014). In a financial setting, Hartzmark and Shue
(2018) demonstrate that prior-day earnings announcements of other firms negatively correlate with stock-price reactions
to contemporaneous announcements.

6Such a recency bias has been documented in a range of economic decisions, such as stock-market participation
and hiring decisions (Highhouse and Gallo 1997). Malmendier, Pouzo, and Vanasco (2018) and Ehling, Graniero, and
Heyerdahl-Larsen (2018) incorporate an exogenous recency effect into learning models and demonstrate how it helps
explain phenomena such as excessive volatility in asset prices and trend-chasing behavior. Our model endogenously
generates this recency effect.
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attributor’s encoded outcomes follow a distribution that appears excessively variable and, due to loss
aversion, negatively skewed relative to the truth. Hence, the loss-averse misattributor underestimates
a prospect’s mean outcome. Furthermore, increasing the true variability of the prospect causes the
agent to underestimate its mean by a greater extent, as increased variability amplifies sensations of
disappointment on average. These biased beliefs imply that a misatributor will too often reject bene-
ficial yet risky prospects.

In Section 5, we relax our baseline assumption that outcomes are i.i.d., which allows us to explore
two natural applications of misattribution. In our primary application, we consider how a sophisti-
cated party can strategically manipulate a misattributor’s beliefs. We analyze a career-concern set-
ting where a misattributing (but otherwise rational) principal sequentially updates her beliefs about
a worker’s ability based on his output. While classical models like Holmström (1999) predict that
the worker’s effort inefficiently declines over time, biased evaluations introduce new incentives that
oppose the classical prediction. High effort today raises the principal’s expectations and causes her
to judge later output more harshly, and thus a sophisticated worker may under-perform relative to the
principal’s expectations early in the relationship in order to exceed them later.7 In a second applica-
tion, we clarify how misattribution can generate persistent forecasting errors even if the misattributor
knows the mean of a prospect. We examine an environment with autocorrelated outcomes, and show
that a misattributor will consistently form overly-extrapolative forecasts of future returns. Intuitively,
when today’s outcome beats expectations, a misattributor exaggerates its value and—assuming posi-
tive autocorrelation—expects unreasonably high outcomes in the future. As such, the next outcome
typically disappoints and the agent reverts to overly-pessimistic expectations. This pattern will con-
tinue over time: the person forms an exaggerated forecast in the direction of the most recent outcome,
which leads to a subsequent reversal.8

Throughout most of the paper, we highlight how a misattributor exhibits systematic patterns in
her beliefs despite facing an exogenous distribution of outcomes. In Section 6, we describe how to
extend this baseline model to scenarios where the misattributor’s own actions influence the distri-
bution she faces. We then illustrate this extension in a stylized repeated-search problem in which a

7This result resembles common strategies of “expectations management” used in a variety of fields. In marketing,
Kopalle and Lehmann (2006) study how a firm should optimally restrain quality expectations when consumers have
preferences that depend on expectations (known as the “gap model” in that literature; see, for example, Anderson 1973,
Oliver 1977, or Ho and Zheng 2004). In finance, firms commonly use a variety of mechanisms to “walk down” investors’
expectations prior to earnings announcements—strategic accounting of working capital and cash flow (Burgstahler and
Dichev 1997), sales (Roychowdhury 2006), or distorting analyst forecasts (e.g., Richardson, Teoh, and Wycoki 2004).
Furthermore, Bartov, Givoly, and Hayn (2002) argue that such efforts to meet or beat analyst expectations could yield
significant excess stock returns. Indeed, Teoh, Yang, and Zhang (2009) find that firms are rewarded for beating expecta-
tions even when they actively suppress analyst forecasts. Our model provides a plausible mechanism that helps explain
why restraining expectations can effectively manipulate beliefs.

8Our basic prediction of extrapolative and volatile forecasts accords with a range of evidence, including Greenwood
and Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015) who find that investors’ and managers’ predictions of their
future earnings exhibit forecast errors that negatively relate with past performance.
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decision maker can exert costly effort each period to increase the chance of a good outcome (e.g.,
a consumer who spends time comparison shopping before each purchase). Exerting effort will lead
a misattributor to exaggerate the value of additional effort, since high effort raises expectations and
causes bad outcomes (e.g., purchases that end up being lower quality than expected) to seem even
worse when they happen. As such, the agent exhibits a form of sunk-cost fallacy—the more she has
already worked, the more she feels compelled to try harder going forward—and inevitably settles on
inefficiently high effort.

We conclude in Section 7 by noting ways that researchers can distinguish misattribution from
other biases that share similar qualitative predictions. We also present some natural extensions of
our model. For instance, our model can be reframed as a bias in social learning where an observer
neglects how expectations shape the experiences of others. A student reading reviews for a class may
fail to appreciate that some bad ratings reflect reviewers’ high expectations rather than a low-quality
professor. Failing to account for others’ expectations may also have important implications for how
policy makers interpret surveys measuring satisfaction. For instance, James (2009) and Van Ryzin
(2004) find that reported satisfaction with public services declines with increased expectations. If
policy makers neglect the role of expectations in these reports, they may wrongly attribute such a
decline to poor quality or changing tastes and consequently propose ill-suited reforms. Moreover,
misattribution captures a common intuition regarding why informational campaigns can backfire. If
agencies tout the benefits of adopting, say, health practices or agricultural technologies, perceived
outcomes may be biased downward because of high expectations, leading patients or farmers to
prematurely abandon the new practices.

Our paper connects to several strands of literature. First, we relate to a literature demonstrat-
ing that behavior is particularly responsive to personal experience.9 In particular, our model pre-
dicts that a misattributor overreacts to payoff-relevant experiences—those that incite elation and
disappointment—relative to those that do not. Moreover, some research in this area suggests that such
experience effects arise from endogenous preference formation in response to good or bad outcomes
(e.g., Thaler and Johnson 1990; Dillenberger and Rozen 2015; Imas 2016), while others suggest these
effects stem from beliefs that overreact to personal experience (e.g., Malmedier and Nagel 2011 and
2016; Vissing-Jorgensen 2003). Our framework highlights that these two channels are intertwined,
and may provide a way to jointly explain these seemingly disparate results.10

9For instance, personal successes and failures play an important role in IPO subscription (Kaustia and Knüpfer
2008; Chiang et al. 2011), risk taking and stock-market participation (Malmendier and Nagel 2011), insurance take-up
(Gallagher 2014), college-major choice (Xia 2016), and compliance with deadlines (Haselhuhn, Pope, and Schweitzer
2012).

10Malmendier and Nagel (2011) document increased apparent risk aversion as investors exit the stock market in
response to adverse personal experiences, which is consistent with our model’s predictions. They argue this stems from
biased beliefs rather than altered preferences, and later work (Malmendier and Nagel 2016) provides more direct support
for the belief channel. A related literature attempts to explain such phenomena by positing that risk preferences depend
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Second, we join a growing literature that explores mistaken learning when agents hold misspeci-
fied models of the world.11 Esponda and Pouzo (2016) provide a general framework for assessing the
long-run beliefs and behavior of misspecified agents. Elements of our modeling approach—in par-
ticular, our analyses of long-run beliefs—are also similar to those of Heidhues, Kőszegi, and Strack
(2018). They study an agent who overestimates her ability and consequently mislearns the value of
a fundamental that determines how her effort translates to output. In their model, the agent misat-
tributes poor performance to situational factors when in reality it was driven by lower-than-expected
ability. Long-run mislearning stems from a feedback loop between the agent’s erroneous beliefs and
her actions, which endogenously determine the distribution of outcomes she observes. A similar
feedback mechanism emerges in our model, but here it stems from the interplay between erroneous
beliefs and the encoding of outcomes. Thus, anomalous dynamics emerge even when the agent does
not take actions that influence the distribution of outcomes she faces.

2 A Model of Misattribution of Reference-Dependent Utility

In this section we present our baseline model in which an agent experiences a series of outcomes
and attempts to learn the underlying distribution. We first introduce the learning environment and
then describe the agent’s reference-dependent utility function. We then formalize our notion of mis-
attribution and describe some immediate implications for beliefs. We conclude this section with a
discussion of our main assumptions and empirical motivation.

2.1 Learning Environment and Reference-Dependent Preferences

Learning Environment. We focus on an agent learning about a single prospect. In each period t =

1, 2, . . . , the agent receives consumption utility xt ∈ R drawn independently from a distribution
F (·|θ) that depends on a parameter θ ∈ R.12 The agent is initially uncertain about θ and attempts to

directly on a decision maker’s history of elations and disappointments. However, these models (e.g., Dillenberger and
Rozen 2015) predict a primacy rather than recency effect: early experiences have a greater impact on behavior than later
experiences. This implication stands at odds with the recency effect documented by Malmendier and Nagel (2011).

11In addition to related models discussed throughout the paper, examples include Eyster and Rabin (2010), Bohren
(2016), Bohren and Hauser (2018), and Frick, Iijima, and Ishii (2018) on misinferring from others’ behavior in social-
learning contexts; Barberis, Shleifer, and Vishny (1998) and Rabin (2002) on extrapolating from small samples; Madarász
(2012) on information projection; Schwartzstein (2014) on selective attention; Spiegler (2016) on biases in causal rea-
soning; and Nyarko (1991) and Fudenberg, Romanyuk, and Strack (2017) on experimentation with misspecified priors.
Similar to our model, both Eyster and Rabin (2010) and Bohren (2016) predict overreaction to new observations, but their
underlying mechanism—a failure to account for informational redundancies in social behavior—is much different than
ours. Additionally, Epstein, Noor, and Sandroni (2010) analyze the limit beliefs of an agent who under- or overreacts to
information. While they demonstrate that overreaction in general can cause beliefs to converge to a false distributional
parameter, we can precisely pin down these limit beliefs given our focus on a specific misspecified model.

12For reasons that become obvious below, we work directly with the distribution of consumption utility rather than the
distribution of material outcomes. We interpret x as if it derives from a classical Bernoulli utility function, m : R → R,
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learn its value based on past realizations of xt. To focus the analysis, our baseline model assumes
xt = θ + εt where εt ∼ N(0, σ2). Unless explicitly stated, we assume the agent knows the variance
σ2 > 0, and begins with a prior belief θ ∼ N(θ0, ρ

2). Let π0 denote this prior distribution. Following
each realization xt, the agent updates her beliefs over θ from πt−1 to πt.

Reference-Dependent Preferences. Following Kőszegi and Rabin (2006; henceforth KR), we as-
sume the agent’s overall utility has two additively separable components. The first component, “con-
sumption utility”—introduced above as x—corresponds to the payoff traditionally studied in eco-
nomics. The second component, “gain-loss utility”, derives from comparing x to a reference level of
utility. Following Bell (1985), we take this reference point to be the agent’s expectation of x, and we
consider a simple piecewise-linear specification of gain-loss utility. Specifically, if the agent believes
that x is distributed according to CDF F̂ with a mean value denoted by θ̂, then

n(x|θ̂) =

 x− θ̂ if x ≥ θ̂

λ(x− θ̂) if x < θ̂,
(1)

where parameter λ ≥ 1 allows for loss aversion.13 Thus, when holding expectation θ̂, the agent’s
total utility is

u(x|θ̂) = x+ ηn(x|θ̂), (2)

where η > 0 is the weight given to sensations of gain and loss relative to absolute outcomes.
In the learning environment introduced above, the agent’s expectations over xt change as she up-

dates her beliefs about the underlying distribution. Thus, the agent’s total utility today depends on
past outcomes through their influence on her current expectation. The agent’s expectation of xt is
pinned down by her expected value of parameter θ entering round t: given belief πt−1, her expec-
tation of xt is θ̂t−1 ≡

∫∞
−∞θ̃ dπt−1(θ̃), and her total utility in period t is u

(
xt
∣∣θ̂t−1

)
as specified in

Equation 2.

2.2 Misattribution of Reference-Dependent Utility

We now turn to the central assumption of our model: the agent neglects how her past experiences
were influenced by reference dependence and misattributes her gain-loss utility to the prospect’s
underlying consumption utility.

The agent seeks to learn θ—the average consumption utility from the prospect—and her experi-
enced utility provides a signal about θ. A rational updater faced with signal ut ≡ xt + ηn

(
xt
∣∣θ̂t−1

)
over consumption realizations c ∈ R such that x = m(c). Additionally, we extend the model to multiple consumption
dimensions in Appendix B.

13While n(·|·) shares many similarities with Kahneman and Tversky’s (1979) value function, we abstract from the
other elements of prospect theory—diminishing sensitivity and probability weighting—to focus on the role of reference
points and loss aversion. Extending the model to incorporate these elements is a natural direction for future research.
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understands this signal is “contaminated” by a transient gain-loss term and properly accounts for this
when using ut to update her beliefs about θ. We assume that a misattributor errs in this step: she
infers from ut as if her utility function weights gains and losses by a diminished factor η̂ ∈ [0, η).
Hence, a misattributor treats signal ut as if ut = x̂t + η̂n

(
x̂t
∣∣θ̂t−1

)
≡ û

(
x̂t
∣∣θ̂t−1

)
, where η̂ < η. That

is, after each period the agent uses her memory of ut along with her misspecified model of utility û
to infer the consumption value she must have received. We denote this encoded outcome by x̂t and
the misinference described above implies that x̂t solves

u
(
xt
∣∣θ̂t−1

)
= ut = û

(
x̂t
∣∣θ̂t−1

)
.14 (3)

Roughly put, the agent’s incorrect model of her past utility understates the degree to which ut de-
rives from gain-loss utility. Any gain-loss utility the decision maker fails to account for is wrongly
attributed to the prospect’s intrinsic consumption value. Finally, we assume the agent is unaware of
her misencoding but is otherwise rational: she updates her beliefs πt−1 over θ according to Bayes’
rule as if the encoded outcome x̂t actually happened.

Our analysis of misattribution is aided by the fact that encoded outcomes take a simple form.
Equation 3 implies that

x̂t =

 xt + κG
(
xt − θ̂t−1

)
if xt ≥ θ̂t−1

xt + κL
(
xt − θ̂t−1

)
if xt < θ̂t−1,

(4)

where
κG ≡

(
η − η̂
1 + η̂

)
and κL ≡ λ

(
η − η̂
1 + η̂λ

)
. (5)

The parameters κG and κL represent the extent that elations and disappointments, respectively, dis-
tort encoded outcomes. Intuitively, κG and κL increase in the degree of misattribution (i.e., as η̂
decreases), and κL > κG when the agent is loss averse (i.e., λ > 1).

The simple specification above (Equation 4) yields several immediate implications. First, it cap-
tures the basic logic of disconfirmation: an outcome that deviates from expectations is perceived as
deviating by more than it really did (e.g., Anderson 1973; Oliver 1977, 1980; Geers and Lassiter
1999).

Observation 1. Outcomes that beat expectations are distorted upward, while those that fall short are

distorted downward: If xt > θ̂t−1, then x̂t > xt, and if xt < θ̂t−1, then x̂t < xt.

Second, when λ > 1, disappointments and elations distort encoded outcomes—and hence beliefs—

14Note that x̂ is well defined and unique: fixing any expectation θ̂t−1, the misspecified utility function û is strictly
increasing in x̂.
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asymmetrically (e.g., Skinner and Sloan 2002; Kuhnen 2015; Erkal, Gangadharan, and Koh 2019).
This is consistent with the large body of evidence from psychology noting a “negativity bias” or
“positive-negative asymmetry effect” in belief updating (e.g., Peeters and Czapinski 1990, Baumeis-
ter et al. 2001).

Observation 2. Losses are misencoded by more than equivalently sized gains: Suppose λ > 1.
Consider outcomes xg ≡ θ̂t−1 + k and xl ≡ θ̂t−1 − k. For any k > 0, |x̂l − xl| > |x̂g − xg|.

Third, misattribution generates “sequential contrast effects”: fixing the value of today’s outcome, its
perceived value seems higher the lower was yesterday’s (e.g., Bhargava 2007; Bhargava and Fisman
2014). When the previous experience lowers expectations, the current outcome is assessed against a
lower benchmark and thus generates a larger elation (or a smaller disappointment).

Observation 3. Sequential contrast effects: θ̂t−1 is strictly increasing in xt−1 and thus ∂x̂t
∂xt−1

< 0.

To illustrate these observations, consider a person experimenting with a new medical treatment
to reduce pain. Let x measure the effectiveness of the treatment (in utils), and suppose the patient
expects x = 50. Imagine x = 60—the treatment works better than expected. To decide whether to use
this treatment again, the patient infers its efficacy x from her experienced utility u = 60+ηn(60|50) =

60 + η10. While she correctly recalls a pleasant experience, she fails to properly disentangle the
consumption value of the treatment from the elation due to surprise. From Equation 4, the patient
recalls a value x̂ such that

x̂ = 60 +

(
η − η̂
1 + η̂

)
10 > x.

If, for instance, η = 1 and η̂ = 1/3, then x̂ = 65. Contrastingly, imagine x = 40—the treatment
works worse than expected. She then encodes a value

x̂ = 40− λ
(
η − η̂
1 + λη̂

)
10 < x.

Again, if η = 1, η̂ = 1/3 and λ = 3, then x̂ = 30. To demonstrate a contrast effect, suppose
the patient tries the treatment a second time and it yields x2 = 50. Since her expectation of x2 is
increasing in the previous outcome, her perceived value on the second trial, x̂2, will be higher if she
initially experiences x1 = 40 rather than x1 = 60.

Finally, our model implies a difference in learning from outcomes with direct utility consequences
versus signals that do not influence payoffs. In particular, given that misattribution stems from a
misunderstanding of the source of utility, those outcomes that incite sensations of elation or disap-
pointment are prone to misencoding in our framework.15

15Relatedly, Charness and Levin (2005) find significantly greater errors in updating about the distribution of balls in
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2.3 Discussion

In this section we discuss our specific modeling approaches and provide evidence motivating the
underlying concept of misattribution.

Interpretation of Misencoded Outcomes. There are at least two natural interpretations for the mis-
encoding in our model. One is that the agent observes her experienced utility ut each period, but
cannot directly observe the underlying outcome xt. Hence, xt must be inferred from ut, and the
misattributor errs in doing so. This is a natural interpretation in settings where a person is learning
about her tastes—e.g., how much she enjoys an unfamiliar product. Another interpretation is that
misattribution occurs even when the agent can observe xt. Under this interpretation, the person forms
mistaken memories based on how an experience feels relative to her expectations—e.g., a purchase
that was surprisingly expensive is remembered as more costly than it really was.

Expectations as the Reference Point. We assume the agent’s reference point is her recent expec-
tation about consumption utility given our focus on learning from experience. In these settings,
expectations based on past outcomes seem a natural reference point.16 That said, our formulation of
misattribution can accommodate alternative definitions of the reference point. Moreover, while there
are several ways to model expectations-based reference points, we adopt the specification in Equation
1 primarily for tractability. We explore reference points that depend on the agent’s perception of the
full distribution of outcomes (as introduced by KR) in Appendix C, which yields similar results.

Restriction to Normally-Distributed Outcomes and Priors. We assume normally-distributed out-
comes primarily to streamline the exposition and analysis. Many of our qualitative results extend
beyond this specific case. For example, Observations 1 and 2 clearly hold for any distributional as-
sumptions, and Observation 3 requires only a mild assumption that the agent’s current expectation is
increasing in the preceding outcome. Our specific results related to order effects in Sections 3 and
5 require only that the outcome and prior distributions are symmetric and quasi-concave (i.e., uni-
modal). These assumptions guarantee that a rational agent’s updated estimate of θ falls between her
previous estimate and the most recent observation.17 Additionally, while we leverage our normality
assumptions in Section 4 to establish that beliefs converge, our comparative statics on the steady-
state belief hold for any distribution of outcomes. Finally, our general formulation of misattribution

an urn when participants observe a sample of draws that have payoff consequences relative to the case in which these
signals have no payoff consequences. Their experiment suggests that the affect induced by payments is a critical factor
in deviations from Bayesian updating.

16Several experimental studies find evidence of expectations-based reference points, though the totality of evidence is
mixed (for example, favoring expectations-based reference points are Abeler et al. 2011; Ericson and Fuster 2011; Gill
and Prowse 2012; Banerji and Gupta 2014; Karle, Kirchsteiger, and Peitz 2015; against are Heffetz and List 2014; Gneezy
et al. 2017; Goette, Harms, and Sprenger 2019). There is additional evidence of expectations-based reference points from
the field, spanning labor supply among taxi drivers (Crawford and Meng 2011; Thakral and To 2018), platform exit from
an online marketplace (Backus et al. 2018), domestic violence resulting from unexpected football losses (Card and Dahl
2011), and decisions in game shows and sports (Post et al. 2008; Pope and Schweitzer 2011; Markle et al. 2015).

17See Chambers and Healy (2012) for a complete characterization of when expectations “update toward the signal”.
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is portable in that it can be readily applied to any distributional environment, and we relax some of
our baseline assumptions in Section 5.18

Economics Literature on Misattribution. As previously noted, our model builds on concepts—
namely disconfirmation and misattribution—studied across a variety of disciplines (e.g., psychology,
political science, marketing). In this section, we discuss the economics literature on misattribution,
highlighting evidence in support of the basic underlying concept.

Our companion paper (Bushong and Gagnon-Bartsch 2019) provides evidence supporting of the
basic notion of disconfirmation noted in Observation 1. In that paper’s main experiment, participants
completed one of two unfamiliar tasks: a neutral task or the neutral task with an unpleasant noise
played in the background. At the start of the experiment, we manipulated participants’ expectations
about which task they would face. Participants in a treatment group determined their task by flipping
a coin just before working, while participants in a control group faced no uncertainty over their task.
Hence, the task assignment involved either a positive or negative surprise for the treatment group
but no surprise for the control group. A day after participants first worked on their assigned task,
we elicited their willingness to continue working (WTW) on that task for additional pay. Relative
to the control group, the treatment group exhibited greater WTW on the neutral task and decreased
WTW on the unpleasant task. When the stakes were highest, the WTW of treatment participants
was roughly 20% higher (neutral task) and 25% lower (unpleasant task) than the WTW of control
participants. These results suggest that the mere fact that some outcomes were previously associated
with sensations of surprise influenced participants’ ex post evaluations of those outcomes. This is
consistent with misattribution of elation and disappointment to the intrinsic enjoyment of the task.

Other forms of misattribution discussed in the economics literature resemble the “fundamental at-
tribution error” or “correspondence bias” in psychology (e.g., Ross 1977; Gilbert and Malone 1995),
where transient situational factors are incorrectly attributed to underlying, stable characteristics of a
person or good. For example, Haggag and Pope (2018) show that experimental participants valued an
unfamiliar drink more when they first experienced it while thirsty.19 Additionally, they find that fre-
quent patrons of an amusement park whose most recent visit was during good weather are more likely
to return. In two papers, Simonsohn (2007, 2010) explores the effect of a transient shock (weather) on

18Although we focus on learning about F (·|θ) where θ is the mean outcome of the prospect, our notion of misattri-
bution easily extends to learning about other distributional parameters. Under such an analysis, encoded outcomes x̂t
would still follow from Equation 3, but the reference point would be given by Êt−1[xt], where Êt−1 is with respect to the
agent’s posterior distribution of outcomes following signals (x̂1, . . . , x̂t−1). Updating about the distributional parameters
would then follow the appropriate Bayesian approach as if x̂t had occurred.

19Haggag and Pope (2018) predict that misattributors tend to underestimate the payoff difference between outcomes
in two different states. This stands in contrast to our predictions (see, e.g., the discussion in Section 6.1). Furthermore,
unlike mistakes driven by misattribution of reference dependence, biased forecasts in Haggag and Pope’s formulation
vanish with experience. These distinctions stem from the fact that Haggag and Pope rule out complementaries where
past experiences influence current consumption utility. Reference dependence introduces this complementarity, as past
experiences form the reference point against which current consumption is evaluated.
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the subsequent behavior of prospective college students and admissions officers. Simonsohn (2007)
demonstrates that applicants with particularly strong academic qualities were evaluated more posi-
tively by admissions officers when the weather on the evaluation day was poor. Simonsohn (2010)
shows that incoming freshmen are more likely to matriculate at an academically rigorous school when
the weather on their visit day was cloudy versus sunny. The author interprets both results as a form of
attribution bias. Relatedly, a series of papers show that CEOs (Bertrand and Mullainathan 2003) and
politicians (Wolfers 2007; Cole, Healy, and Werker 2012) are rewarded for luck as if it were wrongly
attributed to skill—a result that has been faithfully replicated in the lab (see, e.g., Brownback et al.
2019; Erkal, Gangadharan and Koh 2019). Our model shares a common intuition with these forms of
misattribution: transient sensations (elation and disappointment in our case) are misattributed.

3 Order Effects in Belief Updating

In this section, we explore how misattribution distorts learning in the short-run. In particular, we
highlight how the order in which a misattributor experiences outcomes influences her perceived value
of the prospect. This leads to both a “recency bias”, wherein beliefs overweight recent outcomes
and underweight older ones, and an “increasing-order bias” wherein fixing the outcomes she faces,
the agent forms the highest estimate of the prospect’s value following an increasing sequence of
outcomes. Both of these biases arise even if the agent does not exhibit loss aversion.

To fix ideas, consider a manager assessing the ability, θ, of a newly hired employee over the course
of T periods. Each period, the employee generates an i.i.d. benefit xt = θ + εt for the manager.
Although the order of outcomes is irrelevant for rational updating about θ, the misattributor’s beliefs
crucially depend on the sequencing, as early performances set the expectations against which later
performances are assessed. For example, suppose the employee is productive every day in her first
week except one bad day. If that bad day comes first, it will lower the manager’s expectations and the
remaining days will seem surprisingly productive. Alternatively, if the bad day comes last—after the
manager has developed high expectations—it will seem surprisingly unproductive. Even though the
two sequences are permutations of the same outcomes, the fact that one generates subsequent gains
whereas the other ends with a loss will cause the misattributor to reach different final beliefs.

To formalize these intuitions, we first describe how a misattributor’s beliefs about θ depart from
rational beliefs. Rational updating follows a simple recursive rule: the estimate of θ following xt is
αtxt + (1 − αt)θ̂

r
t−1, where θ̂rt−1 denotes the rational estimate entering t. The weight given to the

most recent outcome, αt ≡ 1/(t + σ2

ρ2
), is notably increasing in the variance of the prior relative to

the variance in outcomes, ρ2/σ2—this ratio naturally measures the informativeness of outcomes.
Since a misattributor naively treats her misencoded outcomes as the true outcomes when learning,

her updating mirrors the rational rule: following encoded outcome x̂t, she updates her prior estimate
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θ̂t−1 to reach posterior θ̂t = αtx̂t+(1−αt)θ̂t−1, where αt is the same weight used by a rational agent.
However, because encoded outcomes take the form x̂t = xt + κt

(
xt − θ̂t−1

)
where κt ≡ κG1{xt ≥

θ̂t−1}+ κL1{xt < θ̂t−1} (Equation 4), the misattributor reaches a biased estimate

θ̂t = αt(1 + κt)xt + [1− αt(1 + κt)]θ̂t−1. (6)

Equation 6 immediately reveals that a misattributor “overreacts” to the latest outcome: the rational
estimate weights xt by αt but the biased one weights it by αt(1+κt).20 Moreover, θ̂t assigns the wrong
weight to each previously experienced outcome. Iterating Equation 6, we can express a misattributor’s
expectation after T rounds as a (mis)weighted sum of the true outcomes (see Appendix A for all
proofs):

Lemma 1. Following any sequence (x1, . . . , xT ) ∈ RT , a misattributor forms an estimate

θ̂T = ξT0 θ0 + αT

T∑
t=1

ξTt xt, (7)

where

ξTt =


∏T

j=1[1− αj(1 + κj)] if t = 0,

(1 + κt)
∏T−1

j=t [1− αjκj+1] if t ∈ {1, . . . , T − 1},

(1 + κT ) if t = T.

The rational estimate following (x1, . . . , xT ) is given by Equation 7 with all κt = 0, and hence it
assigns an equal weight of αT to each outcome. Therefore, ξTt measures the weight a misattributor
assigns to outcome xt relative to the rational weight.

Lemma 1 clearly demonstrates that a misattributor differentially weights evidence depending on
when it arrives. We can further elaborate some specific properties of these order effects when a
misattributor’s beliefs obey a basic monotonicity property of Bayesian updating: the posterior mean
θ̂T is an increasing function of each outcome xt for t ≤ T .

Definition 1. Let xT−t denote (x1, . . . , xT ) excluding the tth element. Beliefs are monotonic if for all
T ≥ 1, all t ≤ T , and all xT−t ∈ RT−1, θ̂T is strictly increasing in xt conditional on xT−t.

Monotonicity is equivalent to κL < 1 + σ2/ρ2; that is, the degree of misencoding is not too severe
(i.e., κL ≥ κG is sufficiently small) or outcomes are not too informative (i.e., ρ2/σ2 is sufficiently
small). This ensures that for all t ≥ 1, the weight ξTt in Equation 7 is positive.

20More formally, consider both a misattributing and rational learner who share a common prior expectation θ0. Fol-
lowing outcome x ∈ R, |θ̂ − θ0| ≥ |θ̂r − θ0|, where θ̂ and θ̂r denote the biased and rational posterior estimates of θ,
respectively. Furthermore, the misattributor’s reaction |θ̂ − θ0| is decreasing in η̂: she overreacts more as the extent of
misattribution increases.
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If beliefs are monotonic, then a misattributor exhibits a recency bias: her beliefs weight a recent
gain more than any preceding gain and weight a recent loss more than any preceding loss.

Proposition 1. Consider any sequence (x1, . . . , xT ) ∈ RT and suppose beliefs are monotonic. For

any two outcomes xt and xτ that are both gains or both losses (i.e., κt = κτ ):

1. A misattributor’s final expectation, θ̂T , places greater weight on the more recent outcome:

ξTt > ξTτ if and only if t > τ .

2. Expectations overweight recent outcomes and underweight early outcomes: ξTT > 1, and for

all t < T , ξTt → 0 as T →∞.

3. The recency bias is stronger when outcomes are more informative: ξTt /ξ
T
τ is increasing in

ρ2/σ2.

Although Proposition 1 focuses on outcomes that fall in the same domain (i.e., both gains or both
losses), this restricted focus is relevant only when the agent is loss averse. In that case, losses in-
fluence beliefs more than gains (Observation 2), and it is thus possible for a loss in period t − 1 to
have a larger influence on beliefs than a gain in period t. However, for any two outcomes that fall in
the same domain, the more recent outcome has a greater influence on beliefs than the earlier one. If
the agent is not loss averse, this caveat is irrelevant and Proposition 1 applies to any two outcomes
regardless of their domain.

The intuition underlying Proposition 1 stems from the way that sequential contrast effects (intro-
duced in Observation 3) play out over several rounds of updating. Namely, early outcomes have
a “self limiting” influence on final beliefs: a high initial outcome raises expectations, which causes
subsequent outcomes to be underestimated by more (or overestimated by less). This dampens the pos-
itive influence of the high initial outcome on final beliefs. Similarly, a low initial outcome depresses
expectations, which causes subsequent outcomes to be overestimated by more (or underestimated by
less). This dampens the negative influence of the low initial outcome. Furthermore, as the horizon
T increases, an early outcome xt exerts this countervailing force on a larger number of subsequent
outcomes, which pushes the weight on xt (relative to rational updating) to zero.

Additionally, this recency bias is stronger when outcomes are more informative. In such cases,
early outcomes have a greater impact on expectations, which accentuates the subsequent contrast ef-
fect with later outcomes: when an initial low outcome has a stronger negative impact on expectations,
then later outcomes will be biased upward by a greater amount. This heightens the self-limiting effect
of early outcomes described above.

Finally, Proposition 1 reveals an important distinction between our model and reference depen-
dence without misattribution. With reference-dependent preferences, an agent’s experienced utility
fluctuates depending on her expectations. Absent misattribution, these fluctuations would not cause
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the agent to form biased beliefs; however, misattribution introduces an avenue through which the
agent’s reference points distort her forecasts.

A recency bias suggests that a misattributor will form a higher estimate of θ when her best experi-
ences happen near the end of the horizon. To explore this idea, suppose the agent will experience an
arbitrary set of outcomes X = {x1, . . . , xT}. Among all permutations of X , which sequence maxi-
mizes a misattributor’s perception of θ? We can easily address this question when the misattributor’s
beliefs obey a convexity property of Bayesian updating: the posterior mean θ̂t always falls between
the true outcome xt and her prior θ̂t−1.

Definition 2. Beliefs are convex in period t if, given any prior estimate θ̂t−1 ∈ R and any xt ∈ R,
there exists α̃ ∈ [0, 1] such that θ̂t = α̃xt + (1− α̃)θ̂t−1. Beliefs convex if they are convex in period t
for all t ≥ 1.

Convexity is a somewhat stronger form of monotonicity and is equivalent to the posterior θ̂t being
an increasing function of θ̂t−1. Convexity holds whenever κL < σ2/ρ2—accordingly, convexity, like
monotonicity, holds when outcomes are not too informative about θ.21

If beliefs are convex, then a misattributor exhibits an increasing-order bias: her perception of θ is
maximized by the sequence with an increasing profile of outcomes.

Proposition 2. Consider any set of T distinct outcomes, X . If beliefs are convex, then among all

possible orderings of the outcomes in X , the misattributor’s estimate θ̂T is highest following the

sequence in which the elements are ordered from least to greatest.

Our final short-run result shows how the increasing-order bias described in Proposition 2 extends
when we relax the assumption of convex beliefs. To provide the weakest sufficient conditions, we
consider a context with just two rounds. In this case, so long as one outcome beats initial expectations,
the agent’s estimate of θ is necessarily maximized when the misattributor receives the better outcome
last. Even if both outcomes fall short of initial expectations, this result remains if loss aversion is not
too strong.

Corollary 1. Consider any a, b ∈ R such that a > b. Let θ̂d2 denote the mean belief following the

decreasing sequence (a, b), and let θ̂i2 denote that following the increasing sequence (b, a).

1. If a > θ0, then θ̂i2 > θ̂d2 .

21Rational beliefs in this setting are always convex given that θ and εt are independently drawn from normal distri-
butions. Equation 6 reveals that when beliefs are not convex, then θ̂t strongly overweights xt and negatively weights the
prior (i.e., the contrast effect more than offsets the positive effect of a higher prior expectation on the agent’s posterior).
Note that even if beliefs are not initially convex, they eventually become convex when the horizon is sufficiently long:
as the total number of outcomes accumulates, each additional outcome has a diminished influence on beliefs and there
accordingly exists a period t∗ = b1 + κL − σ2/ρ2c beyond which beliefs are convex in each period t > t∗. In this case,
the results below that rely on convexity will hold beyond period t∗.
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2. If both a, b < θ0 and beliefs are not convex, then there exists a threshold λ̄ > 2 such that

θ̂i2 < θ̂d2 for some a, b ∈ R only if λ > λ̄.

Regardless of whether beliefs are convex, either a > θ0 or λ < 2 guarantees that θ̂i2 > θ̂d2 . Fur-
thermore, even with relatively strong loss aversion (λ > 2) the range of values (a, b) for which the
decreasing sequence maximizes beliefs is limited.22 In light of this caveat, Part 1 of the corollary pro-
vides a simple sufficient condition for our increasing-sequence bias that may be useful for empirical
tests.

The results above accord with evidence that, fixing the outcomes a person faces, they tend to both
(i) prefer increasing sequences (e.g., Loewenstein and Prelec 1993); and (ii) retrospectively form the
most optimistic evaluations of an episode thereafter. Speaking to the latter point, Ross and Simonson
(1991) allow participants to sample two video games and find that willingness to pay for the pair is
significantly higher for those who sampled the better game second. Similarly, Haisley and Loewen-
stein (2011) demonstrate that advertising promotions that utilize giveaways are most effective when
sequenced in increasing order of value—that is, the high-value promotional item is given last. Our
model provides a lens through which we can understand both the preference for increasing sequences
and the subsequent positive evaluations demonstrated in such papers. Reference dependence ab-
sent misattribution—with the assumption that the agent believes her reference point will be her past
experiences—provides an explanation for an ex-ante preference for increasing sequences. And the
altered ex-post evaluations in both Ross and Simonson (1991) and Haisley and Loewenstein (2011)
are consistent with misattribution.23

Our results in this section may also help explain the well-known “end effect”: people retrospec-
tively form inflated impressions of experiences that end on a high note, as shown by Kahneman et al.
(1993). In that paper, participants experienced a novel painful episode (putting their hand in frigid
water for a fixed amount of time) and were asked how willing they were to repeat the experience. Par-
ticipants were in one of two conditions: (1) 60 seconds of cold water; or (2) 60 seconds of cold water
followed by 30 seconds of slightly warmer water. This second condition made the total experience
longer than the first condition but the episode ended on a relatively good note. Surprisingly, partic-
ipants were more willing to repeat the episode in the second condition, despite its longer duration.
This is consistent with our model, which suggests that an agent’s unpleasant early experience leads

22This happens only if both outcomes come as a loss relative to the person’s prior—b < a < θ0—and b is sufficiently
close to a (see Equation A.8 for a precise condition). To provide an intuition, suppose beliefs are not convex and hence
excessively react to new outcomes. If b is sufficiently close to a, then b is perceived as a gain when experienced after
a: beliefs become so pessimistic after the initial loss a that the truly worse outcome b feels like a gain. Furthermore, if
losses distort beliefs sufficiently more than gains (i.e., λ > λ̄), then θ̂2 is maximized (roughly) by minimizing experienced
losses. Thus, because the first outcome necessarily comes as a loss while the second comes as a gain, losses are minimized
when the better outcome happens first.

23Several authors suggest that such assessments stem from the loose idea of “adaptation and subsequent contrast”,
which has a similar intuition as our formal model (see, e.g., Tversky and Griffin 1990; Loewenstein and Prelec 1993;
Baumgartner, Sujan, and Padgett 1997).
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her to form a pessimistic view of the episode. Thus, adding a still-bad-but-better experience to the
end of the sequence can—when contrasted against her initial experience—help improve her overall
impression of the episode.24

As noted in the introduction, our order effects seemingly stand at odds with confirmation bias,
wherein new evidence is wrongly interpreted as conforming to one’s expectations (e.g., Rabin and
Schrag 1999; Fryer, Harms, and Jackson 2018). Under confirmation bias, outcomes deviating from
expectations are encoded as closer to expectations, which implies that early outcomes are over-
weighted relative to later outcomes. Although misattribution makes the opposite prediction, the two
mechanisms are not mutually exclusive. Indeed, empirical tests of order effects in belief updating
find support for both confirmatory and recency effects (see Hogarth and Einhorn 1992 for a meta
analysis and Geers and Lassiter 1999 for a specific test). Which effect prevails seems to depend on
the nature of the learning problem: confirmatory effects tend to dominate as evidence becomes more
ambiguous and difficult to interpret.

4 Long-Run Beliefs: Pessimism over Risky Prospects

Continuing the setup above, we now describe how errors in beliefs can persist following ample ex-
perience with the prospect. Although the misattributor places excess weight on recent outcomes (as
shown in Proposition 1), her beliefs about θ eventually converge. Absent loss aversion, the agent’s
long-run beliefs about the mean outcome reflect the underlying truth, although the outcomes she en-
codes are more variable than the underlying outcomes really are. When the agent is loss averse, her
long-run beliefs about the average outcome are biased downward: the agent becomes pessimistic.
This pessimism increases in proportion to the prospect’s true underlying variance. These distortions
in beliefs imply that the agent may reject risky-but-optimal prospects.

We seek to establish convergence to a steady-state belief θ̂ that is consistent with the encoded data
it generates—that is, when holding expectation θ̂, the average encoded outcome is equal to θ̂. To
formalize this notion, consider a function ∆ : R→ R where ∆(θ̂) is the deviation between θ̂ and the
expected value of the encoded outcome assuming the agent holds expectation θ̂. Given our expression
for the encoded outcome in Equation 4:

∆(θ̂) ≡ E
[
xt + κt(xt − θ̂t−1)

∣∣θ̂t−1 = θ̂
]
− θ̂, (8)

24The end effect is one-half of the peak-end heuristic in remembered utility. This other half—peak—refers to the fact
that the highest valence experience (either good or bad) is given outsize weight in retrospective evaluations. Our model
may also speak to this: given that peak deviates from expectations, misattribution implies that it would be overweighted
in final beliefs. Kahneman et al. (1993) interpret their evidence as support of duration neglect—the tendency to fail to
properly integrate utility over time.
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where the expectation is conditional on the true parameters governing xt, (θ, σ). A steady-state belief
is thus a zero of ∆.

We now show that the misattributor’s sequence of mean beliefs, 〈θ̂t〉, converges to a unique steady-
state belief, which we denote by θ̂∞. Moreover, we characterize how θ̂∞ depends on the true distri-
butional parameters (θ, σ), the misattributor’s underlying preferences, and the extent of her bias.

Proposition 3. Consider a prospect with mean θ and variance σ2 > 0.

1. There is a unique steady-state mean belief, θ̂∞. The sequence of a misattributor’s expectations,

〈θ̂t〉, converges almost surely to θ̂∞.

2. In the steady-state, the misattributor forms pessimistic beliefs about the mean, θ̂∞ ≤ θ, and

this inequality is strict if and only if λ > 1. If λ > 1, then beliefs θ̂∞ are strictly decreasing in

the true variance, σ2.

3. Additional comparative statics: θ̂∞ is strictly decreasing in the degree of reference dependence

(η) and loss aversion (λ), and θ̂∞ is strictly increasing in the degree to which the agent accounts

for reference dependence (η̂).

Part 1 of Proposition 3 shows that there is a unique root of ∆ that characterizes θ̂∞. Specifically,
that root is the value of θ̂ that solves the following equation:

θ̂ = θ − kF
(
θ̂|θ
)θ̂ −

∫ θ̂
−∞ xf(x|θ)dx
F
(
θ̂|θ
)

 where k ≡ (λ− 1)(η − η̂)

(1 + η)(1 + η̂λ)
, (9)

and where, recalling Section 2, F (·|θ) is the CDF of outcomes conditional on the true mean and
f(·|θ) is the associated PDF. Thus, the downward bias in θ̂∞ is proportional to the average encoded
loss in the steady-state (i.e., the expression in braces) scaled by the likelihood of such a loss.

Although outcomes are truly i.i.d., convergence does not follow directly from a basic law of large
numbers because encoded outcomes are serially correlated: prior outcomes shift a misattributor’s ref-
erence point and thus influence the current encoded outcome. Hence, following Heidhues, Kőszegi,
and Strack (2019) and Esponda and Pouzo (2016), we use techniques from stochastic-approximation
theory to establish convergence. The details of this analysis are discussed in the proof.

Part 2 of Proposition 3 shows that a loss-averse misattributor forms pessimistic beliefs over time.
Intuitively, loss aversion causes the agent to encode a distribution of outcomes that is negatively
skewed relative to the true distribution—she underestimates bad experiences more than she overes-
timates good ones. While loss aversion drives down perceptions of θ, it is not immediate that such
pessimistic expectations will persist, since pessimistic beliefs simultaneously imply that the misat-
tributor will experience more pleasant surprises. The steady-state belief θ̂∞ balances these two forces:
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a misattributor underestimates θ to such an extent that the resulting excess of positive surprises ex-
actly offsets the downward bias stemming from loss aversion. Furthermore, the steady-state belief
θ̂∞ is stable in the sense that once beliefs are near θ̂∞, the resulting (mis)encoded outcomes push the
misattributor’s expectations toward θ̂∞. Specifically, if her expectations were to move below θ̂∞, then
she would experience an increased rate of elations that drive her expectations back up. Conversely, if
her expectations were to move above θ̂∞, then the increased rate of disappointments would push her
expectations back down.

Additionally, Part 2 of Proposition 3 shows that greater variability in the underlying distribution
of outcomes causes a misattributor to underestimate θ by a larger amount. That is, a misattributor
develops more pessimistic beliefs about prospects that are riskier. Increased variance implies that
the agent experiences greater sensations of elation and disappointment. And since loss aversion
implies that such gain-loss utility is negative on average, encoded outcomes tend to decrease in σ.
For example, if a misattributing consumer faces two logistics companies (e.g., UPS and FedEx) with
identical mean delivery times, she will come to believe the more variable company typically takes
longer. As we show below, such mistakes can lead to poor decisions when balancing risk and return,
as the agent is systematically more biased against riskier prospects.

Finally, Part 2 of Proposition 3 also shows that if the misattributor is not loss averse (i.e., λ = 1),
then she correctly learns the prospect’s mean outcome, θ. It is straightforward to see that correct
expectations (i.e., θ̂∞ = θ) correspond to the unique steady-state belief in this case. When expecting
θ, outcomes exceeding expectations are, on average, overestimated by the same extent that outcomes
missing expectations are underestimated. Thus, the bias in encoded outcomes is symmetric about the
misattributor’s expectations and does not impart systematic drift in her beliefs—when holding correct
expectations, encoded outcomes will also have a mean equal to θ.

Regardless of whether the agent is loss averse or not, the steady-state distribution of encoded
outcomes has greater variance than the true distribution.25 Although this paper focuses exclusively on
learning the mean outcome, a misattributor would also overestimate the variance in outcomes within
a richer model that allows for updating over σ2.26 In this case, the misattributor would mislearn
the distribution of xt even without loss aversion. Furthermore, such an extension only reinforces
our conclusion that learning from experience causes a misattriubtor to undervalue a risky prospect:
overestimating σ2 lowers the prospect’s perceived value for any risk-averse agent.

Figure 1 utilizes a simulated sequence of outcomes to display the results above, depicting both the

25For a formal proof, see the discussion concluding the proof of Proposition 3 in Appendix A
26In particular, if beliefs about σ2 do not influence how an outcome is misencoded, then the misattributor will perceive

a steady-state variance σ̂2 > σ2 equal to the variance of encoded outcomes given that the agent holds expectation θ̂∞
characterized by Proposition 3. For instance, in the canonical model where priors over θ and σ2 follow independent
Normal and Inverse-Gamma distributions, respectively (see, for example, DeGroot 1970), a misattributor’s beliefs over
(θ, σ) converge to (θ̂∞, σ̂∞) where θ̂∞ is the same value described in Proposition 3 and σ̂2

∞ = Var(xt + κt(xt − θ̂∞)).
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long-run path of beliefs and the density of perceived outcomes for two different variances: σ2 = 1

(top panels) and σ2 = 5 (bottom panels).

Figure 1: The top-left panel depicts a simulated path of estimates 〈θ̂t〉 for both a rational and biased
agent. The top-right panel shows the true and perceived density of outcomes. The simulation assumes
normally-distributed outcomes and priors with θ = 0, σ2 = 1, η = 1, λ = 3, and η̂ = 1/3. The
bottom two panels are analogous except with an increased variance of σ2 = 5.

We now consider how the long-run beliefs described above distort a misattributor’s valuation of
the prospect and potentially harm her decisions. Let v(θ̃, σ) denote a misattributor’s expected (per-
period) utility from the prospect assuming she is confident that the mean is θ̃:

v(θ̃, σ) ≡
∫ ∞
−∞

[
x+ ηn(x|θ̃)

]
f(x|θ̃)dx. (10)

Accordingly, v(θ, σ) denotes the agent’s valuation when she reaches correct beliefs about the prospect.27

We explore how this correct-information benchmark compares to the agent’s forecasted utility
in the steady state, v(θ̂∞, σ), given the biased beliefs characterized in Proposition 3. Given that
θ̂∞ < θ, it follows that v(θ̂∞, σ) < v(θ, σ): a misattributor tends to undervalue risky prospects when

27Our formulation of v implicitly assumes the agent forecasts her utility according to her true gain-loss parameter η,
which we suspect is reasonable given our interpretation that misattribution occurs in retrospect. Alternatively, one could
assume that the person errs in forecasting her utility as well, which would entail substituting η̂ into Equation 9 above. We
do not rely on this distinction in the results below.
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learning from experience. To illustrate the immediate decision consequences of this bias, consider a
misattributing manger who decides to fire an employee if his valuation falls below some threshold w.
There exist parameters (θ, σ) such that the manager would retain the employee under correct learning
(i.e., v(θ, σ) > w), yet fire him under misattribution (i.e., v(θ̂∞, σ) < w).28

We can further characterize which prospects foster more pessimistic beliefs and are hence un-
dervalued by a greater extent. Building on the fact that θ̂∞ is decreasing in the true variance of
outcomes (Proposition 3, Part 2), our next result shows that v(θ, σ) − v(θ̂∞, σ) is strictly decreasing
in σ. Thus, the mistake discussed in the managerial example above is accentuated for more variable
prospects. Importantly, this bias against variability is on top of the agent’s intrinsic risk preferences—
amplifying any existing distaste for risk—and stems from the pessimistic long-run beliefs described
above. Moreover, we show that these pessimistic misperceptions of risky prospects can be arbitrarily
costly. In particular, v(θ, σ)−v(θ̂∞, σ) is unboundedly decreasing in σ. This extreme limit suggests a
misattributor may perceive arbitrarily different valuations of two prospects that in fact yield identical
expected utility under correct beliefs. To help show this, let the set P(w) ≡ {(θ, σ) | v(θ, σ) = w}
denote the parameter combinations (θ, σ) for which the prospect yields expected utility w ∈ R under
correct beliefs.

Proposition 4. Suppose λ > 1.

1. The difference between the expected utility under correct beliefs and the agent’s perceived

expected utility in the steady state, v(θ, σ)−v(θ̂∞, σ), is strictly positive and strictly increasing

in σ.

2. Fix a constant w. For any ŵ < w, there exists a threshold σ̄(w, ŵ) > 0 such that any prospect

with (θ, σ) ∈ P(w) and σ > σ̄(w, ŵ) will generate a forecasted expected utility in the steady

state that is strictly less than ŵ. That is, for any arbitrarily large bound w − ŵ, σ > σ̄(w, ŵ)

implies that the error in valuation, v(θ, σ)− v(θ̂∞, σ), exceeds w − ŵ.

To illustrate, consider two prospects, A and B, such that A has a higher mean and variance than B
yet the two yield the same expected utility under correct beliefs. Under a misattributor’s steady state
beliefs, she wrongly expects A to yield a lower utility than B, and this discrepancy can be made
arbitrarily large by choosing a variance for A that is sufficiently high. Intuitively, the overweighting

28 If a misattributor’s biased beliefs cause her to reject a prospect that she would otherwise accept under full
information—e.g., if v(θ̂∞, σ) < w < v(θ, σ)—then the agent suffers a welfare loss. Note that θ̂∞ < θ implies
that the agent is pleasantly surprised on average, and thus her average experienced utility under incorrect beliefs (i.e., the
expectation of u

(
x|θ̂∞

)
with respect to the true distribution of x) is higher than the rational-learning benchmark, v(θ, σ).

Thus, if it is optimal to accept the prospect under full information, it is also optimal to do so when holding expectation
θ̂∞. That said, the misattributor does not realize she has biased beliefs. Hence, she decides whether to reject the prospect
based on her forecasted valuation v(θ̂∞, σ), which fails to account for the pleasant surprises she would experience as a
result of her overly-pessimistic expectations.
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of occasional losses swamps the benefit of a high mean when the magnitude of these losses grows
large. Such biased learning may help explain why individuals tend to excessively avoid risk based on
their personal experiences, as shown by Malmendier and Nagel (2011).

5 Extensions and Applications

In this section, we extend our baseline model to environments where outcomes are no longer identi-
cally distributed or independent. This allows us to examine two natural applications of misattribution
where the distribution of outcomes depends on (i) the behavior of an exploitative party and (ii) past
outcomes through autocorrelation.

5.1 Expectations Management and Reputation

Our first extension explores how a sophisticated party can strategically manipulate the beliefs of a
misattributor. Specifically, we consider a career-concern setting where a misattributing (but otherwise
rational) principal sequentially updates her beliefs about a worker’s ability and offers wages based on
those inferences. For instance, imagine a professor assessing her research assistant, or a homeowner
assessing a contractor. Unlike the rational signal-jamming logic where high effort is interpreted
as uninformative, a misattributor wrongly attributes outcomes that deviate from expectations to the
worker’s ability, providing a way for the worker to deceive the principal. Thus, a worker aware of
the principal’s misattribution faces new incentives which push against the declining effort profile
predicted by both the classical model (e.g., Holmström 1999) and models of confirmation bias (e.g.,
Rabin and Schrag 1999). Namely, we show that the sophisticated worker follows an effort path that
initially under-performs relative to the principal’s expectations but consistently beats them thereafter.
By initially setting the bar low, he can supply a series of elations that are interpreted as favorable
signals of his ability. More generally, this exercise demonstrates how misattribution explains both the
frequent use and persuasive nature of expectations management.

Following Holmström (1999), a principal (she) hires a worker (he) of unknown ability to exert
effort over T periods (i.e., the principal and worker agree ex ante to a fixed-duration relationship).
Each period t, the worker supplies effort et ∈ R+ leading to output xt = θ + et + εt, where θ ∈ R is
the worker’s ability. Both the principal and worker share a common prior over θ. We take xt (net of
paid wages) as the principal’s consumption value in period t—she directly benefits from the worker’s
performance—and we maintain our baseline assumptions on θ and εt introduced in Section 2 (e.g.,
normally distributed and i.i.d.). Hence, the notable change to the environment is that outcomes can
be strategically manipulated via the worker’s effort. We assume the principal cannot directly observe
effort, so she updates about the worker’s ability based on her perception of xt. These updated beliefs
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determine the wage the principal offers in the subsequent period. In particular, we assume that the
principal pays a wage wt at the start of each round equal to her current expectation of xt (e.g., the
market perfectly competes for the worker’s labor). As such, the worker maximizes the principal’s
perception of his ability subject to effort costs. We assume these costs are separable across periods
and given by a flow disutility function c(·) that is strictly increasing and convex. Thus, in each period
t, the worker aims to maximize the expected value of

∑T
k=t[wk − c(ek)].29

We consider a principal who suffers misattribution while inferring the worker’s ability, and a ra-
tional worker who is aware of the principal’s error and attempts to exploit it. Given her mistaken
perceptions of output, the principal’s beliefs about θ follow the mechanics derived in Section 3. As
the principal is unaware of her mistake, she neglects the worker’s incentive to exploit it. Thus, she
additionally develops incorrect beliefs about the worker’s strategy. We close the model by assuming
the principal wrongly presumes common knowledge of rationality: the principal believes the worker
follows the Bayesian-Nash-Equilibrium strategy that he would play when facing a rational principal,
and the principal best responds to this presumed behavior of the worker. In this case, the naive prin-
cipal mispredicts the worker’s effort in expectation and misattributes realized discrepancies to ability
and noise. We further assume that the worker is aware of this misattribution and accordingly best
responds to the principal’s distorted beliefs.30

The sophisticated worker’s optimal effort path will fall short of the principal’s expectations early
and then consistently beat expectations later in the relationship. Let e∗t and ert denote the worker’s
optimal effort in round t when facing a misattributing and rational principal, respectively.

Proposition 5. Consider the expectations-management setting described above and assume λ = 1.

If beliefs are convex, then there exists a period t∗, 1 ≤ t∗ < T , such that the worker’s optimal effort

falls short of the rational benchmark (e∗t < ert ) for all t < t∗ and exceeds this benchmark (e∗t > ert )

for all t ≥ t∗.31

When facing a misattributing principal, early effort by the worker imposes a cost on his future selves:
hard work in period one increases the principal’s expectations in all future periods, which means
that subsequent output will be judged more harshly. The worker therefore restrains early effort and

29While we abstract from discounting here to ease exposition, our proofs demonstrate that the results in this application
continue to hold for any exponential discount factor δ ∈ (0, 1).

30Our qualitative predictions are robust to alternative assumptions about the principal’s anticipated effort. For instance,
our results extend when the principal correctly predicts the worker’s effort profile despite lacking a good theory as to why
the worker deviates from the Bayesian-Nash strategy.

31We restrict attention to λ = 1 and relegate the case of λ > 1 to Appendix D. Loss aversion yields qualitatively
similar results but complicates the analysis.
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pleasantly surprises the principal in later periods.32,33 Of course, as in the rational case, a worker
still has an incentive to provide high initial effort—first impressions remain important. However, the
worker has greater incentive to maintain high effort under misattribution since he is unduly penalized
for falling short of expectations. In a sense, the principal’s biased evaluations impose an informal
contract under which the worker is compelled to uphold any precedent he sets for high effort early
in the relationship. In fact, while the misattributing worker may reduce effort in early rounds, these
incentives to continually surpass expectations can lead to increased total effort,

∑T
t=1 e

∗
t , relative to

the rational case. Hence, misattribution can mitigate the moral-hazard problem that suppresses effort
in the rational model.

Additionally, the proposition highlights that while the worker eventually beats expectations, she
prefers to do so sufficiently late in the horizon to avoid setting the bar too high early on. Intuitively,
the longer is the horizon of the relationship, the greater is the “externality” that early effort imposes
on future selves. Indeed, the extent to which the worker under-performs at the onset is increasing in
the horizon.34

Corollary 2. Consider the expectations-management setting described above. If beliefs are convex,

then there exists a horizon T̄ such that T > T̄ implies e∗1 < er1. Furthermore, e∗1 − er1 is strictly

decreasing in T conditional on T > T̄ .

Although we framed this application as a familiar career-concern model, the analysis directly ex-
tends to other settings where one party has an incentive to build a positive reputation. Furthermore,
our results may speak to forms of expectations management used in diverse settings ranging from
politics, to marketing, to finance. Politicians and firms often strategically “walk down” expectations
only to later surpass them. Additionally, research from empirical finance shows that firms attempt
to lower investors’ expectations prior to earnings announcements. Bartov, Givoly, and Hayn (2002)
demonstrate that meeting or beating analyst expectations yields significant excess stock returns. Sim-

32This intuition shares similarities with “ratcheting effects” studied in the literature on contracts and regulation (e.g.,
Freixas, Guesnerie, and Tirole 1985; Laffont and Tirole 1988). In those settings, the worker is reluctant to reveal positive
private information about his efficiency early in the relationship so that he can demand higher compensation. In our
setting, the worker would want to reveal positive information about θ if he could credibly do so. Misattribution, however,
complicates the dynamics of revealing such information.

33Because Proposition 5 describes the worker’s deviations from the rational path, it does not necessarily imply that e∗t
increases over time. In fact, convexity rules out an increasing effort path in this particular setting where the worker earns
a reward each round. That said, misattribution can cause the worker to supply an increasing profile of effort in alternative
settings even when beliefs are convex. For example, consider a setting with one payment period that follows multiple
rounds of effort and evaluation. If the principal were rational, the worker would smooth his effort across rounds, since
each is a perfect substitute for another in terms of the principal’s posterior beliefs. In contrast, when the principal suffers
misattribution, the optimal pattern of effort follows an increasing profile (see Proposition 2).

34As highlighted above, we assume the two parties commit ex ante to a T -period relationship and thus the worker
has no additional incentive to provide a positive first impression. While allowing the principal to fire the worker would
complicate the analysis, it would not change the qualitative conclusion that the worker undercuts the rational benchmark
early in the relationship.

24



ilarly, Teoh, Yang, and Zhang (2009) show that firms are rewarded for beating expectations even
when those analyst forecasts are walked down by firm guidance.35 Although such expectations man-
agement is prevalent in a number of domains, we provide an intuitive mechanism that helps explain
why this technique can effectively influence beliefs.

5.2 Over-Extrapolation and Belief Reversals in Autocorrelated Environments

This section illustrates that the type of extrapolative bias demonstrated in Section 3—where beliefs
respond excessively to the most recent outcome—can in fact persist in the long run in some envi-
ronments. Proposition 3 showed that when outcomes are i.i.d., the misattributor will reach a stable
expectation about future outcomes. This means that the recency bias identified in Proposition 1 di-
minishes as the number of rounds grows large.36 We consider a simple extension with autocorrelated
outcomes to show that this vanishing recency bias is not a general phenomenon, but instead stems
from the i.i.d. nature of outcomes. In particular, we show that autocorrelation induces the misattribu-
tor to continually form overly-extrapolative forecasts of future outcomes, and these forecasts exhibit a
predictable error: if the agent overestimates today’s outcome, she tends to underestimate tomorrow’s
outcome (and vice versa). In contrast to Proposition 3, these erroneous beliefs persist even when the
misattributor is not a loss-averse.

To extend our baseline setup (Sections 2 to 4) to allow for autocorrelation, suppose xt = θ +

ϕxt−1 + εt, where the parameter ϕ ∈ (0, 1] measures the extent of autocorrelation.37 We assume the
agent knows ϕ and we maintain our baseline assumption that εt ∼ N(0, σ2). Furthermore, to simply
demonstrate that autocorrelation generates persistent over-extrapolation even if updating about θ were
to cease, we assume the agent knows θ and we normalize it to θ = 0. Our analysis here focuses on the
agent’s expectation of xt given the outcomes prior to t, which we denote by Êt−1[xt]. In our baseline
setup from previous sections, this forecast was equal to the agent’s current expectation of θ. Here,
however, her forecast is simply her perception of the previous outcome scaled by the autocorrelation
parameter: Êt−1[xt] = ϕx̂t−1. As in all previous sections, the agent’s reference point in round t is
her expectation Êt−1[xt], and her total utility from xt is given by Equation 2 with this reference point
applied.

35Such “expectations management” can be enacted through a number of channels, including strategic accounting of
working capital and cash flow from operations (Burgstahler and Dichev 1997), real activities such as sales (Roychowdhury
2006), or through indirect channels such as managing analyst forecasts (e.g., Richardson, Teoh, and Wycoki 2004).

36Put differently, the misattributor’s prediction of xt+1 after t rounds overweights the most recent outcome, xt, by
relatively less as t grows large. More precisely, the weight this expectation places on xt relative to some preceding

outcome xt−c is given by Lemma 1 and is equal to ξtt
ξtt−c

= 1+κt

1+κt−c

(∏t−1
j=t−c[1− αjκj+1]

)−1
. For a fixed sequence of

(κt), this ratio is decreasing in t since αt → 0 in t.
37We restrict attention to the case of positive autocorrelation solely for the sake of exposition. Analogous results hold

for the case of ϕ ∈ [−1, 0).
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We now show that a misattributor’s forecasts over-respond to the most recent outcome and are
therefore excessively volatile and exhibit predictable errors. To first illustrate the intuition, consider
an outcome that beats today’s expectations. The misattributor will exaggerate its value and, due to the
autocorrelation, expect an unreasonably high value tomorrow. These inflated expectations, however,
imply that the next outcome will typically disappoint, thereby causing the misattributor to reverse
course and form overly-pessimistic beliefs. This pattern will continue over time: the agent forms
an exaggerated forecast in the direction of the most recent outcome, which leads to a subsequent
reversal. To formalize, let dt ≡ x̂t− Êt−1[xt] denote the misattributor’s forecast error realized on date
t.38

Proposition 6. A misattributor’s forecast entering period t+ 1 is Êt[xt+1] = ϕx̂t, where

x̂t = (1 + κt)xt +
t−1∑
j=1

(1 + κj)

(
(−ϕ)t−j

t∏
i=j+1

κi

)
xj. (11)

Hence, forecasts exhibit

1. Excessive extrapolation and volatility: Êt[xt+1] overweights the outcome on date t by a factor

of (1 + κt), and conditional on (x1, . . . , xt−1), Var
(
Êt[xt+1]

)
= (1 + κt)

2Var
(
Et[xt+1]

)
.

2. Predictable errors and reversals: Forecast errors follow a negatively-correlated process given

by

dt = (1 + κt)

{
− ϕ

(
κt−1

1 + κt−1

)
dt−1 + εt

}
. (12)

The most recent outcome is overweighted by a factor of 1 + κt, implying that forecasts overreact
to recent outcomes. Additionally, a misattributor’s forecast wrongly depends on all past outcomes,
while the rational forecast is independent of outcomes prior to t after conditioning on xt. Consistent
with the oscillating logic in the example above, Equation 11 reveals that the misattributor’s forecast
negatively weights outcomes that occurred an odd number of periods ago and positively weights those
that happened an even number of periods ago.

While rational predictions generate uncorrelated forecast errors, Part 2 of Proposition 6 highlights
the negative relationship between a misattributor’s errors: overly optimistic forecasts are typically
followed by overly pessimistic forecasts. The strength of this relationship is increasing in both the
extent of misattribution and the extent of autocorrelation. Figure 2 below uses a simulated time seres
to depict a misattributor’s overly extrapolative forecasts (top panel) and the negative relationship in
her forecast errors (bottom panel).

38We define the forecast error as the difference between the misattributor’s encoded outcome and her expectations—
this is the agent’s perceived forecast error. Our prediction of a negative relationship between today’s forecast error and
tomorrow’s holds if we alternatively define the forecast error as the difference between the true outcome and expectations.
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Figure 2: The top panel displays both the rational and biased forecasts for a simulated process with
ϕ = 0.7, σ = 5, η = 1, λ = 3 and η̂ = 1/3. Using that same data, the bottom panel depicts the
negative relationship between forecast errors on date t and t+ 1.

Our basic prediction of overly-extrapolative and volatile forecasts accords with a range of evi-
dence. For example, Gennaioli, Ma, and Shleifer (2015) and Greenwood and Shleifer (2014) find
that managers and investors form extrapolative, volatile predictions of their future earnings and that
their forecast errors are negatively correlated with past performance. While alternative models give
rise to this general pattern of extrapolative beliefs and systematic reversals—e.g., Bordalo, Gennaioli,
and Shleifer’s (2017a) model of diagnostic expectations based on Kahneman and Tversky’s (1972)
representativeness heuristic—our model provides additional predictions that may help empirically
disentangle these mechanisms. Namely, we predict that these patterns are more pronounced when
forecasting about one’s own earnings (i.e., when outcomes generate elation and disappointment) and
that beliefs respond more to bad news than good.
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6 Misattribution and Personal Equilibrium

In our baseline model, the misattributing agent faced an exogenous distribution of outcomes—she
could not directly take actions to influence this distribution. To handle environments that endogenize
the distribution—for instance, natural settings where the agent can choose between different prospects
each round—we must add more structure to our framework. In particular, we must specify how the
agent’s strategy over actions influences her reference points. Below we sketch how to extend our
baseline model in such settings, and we apply this extension to highlight an additional result: when
the agent can exert effort to improve the distribution of outcomes, she will settle on inefficiently high
levels of effort.

To motivate this extension, first consider a setting where the agent is learning about two normally-
distributed prospects with unknown means, θA and θB. In each period, she must choose between a
random draw from either A or B. We assume that this choice determines the agent’s reference point
for that period. For instance, if the agent chooses prospect A today, then her reference point is what
she (currently) expects to earn from prospect A. We further assume the agent knows how her actions
determine her reference point and accordingly maximizes her expected utility. This corresponds
to KR’s (2007) notion of “choice-acclimating personal equilibrium” aside from the fact that we do
not impose rational expectations and choices are made with respect to the misattributor’s biased
subjective beliefs.39

We now sketch how to extend our baseline model more generally. Each period t begins with a
decision phase in which the agent selects an action at ∈ A where A is a compact subset of R.
As in the baseline model, the agent is initially uncertain about a distributional parameter θ ∈ RK

for some finite K ≥ 1. Conditional on the parameter θ and chosen action at, outcome xt ∈ R is
distributed according to F (·|θ, at). The agent begins with a prior π0 over θ, and updates these beliefs
each round conditional on her action and its resulting (mis)encoded outcome. To derive the encoded
outcome, let πt−1 denote the agent’s beliefs over θ entering round t. Conditional on choice at, her
expected outcome is Êt−1[xt|at] ≡

∫∞
−∞ xdF̂t−1(x|at) where F̂t−1(x|at) ≡

∫
F (x|θ, at)dπt−1(θ), and

the encoded outcome is analogous to Equation 4:

x̂t =

 xt + κG
(
xt − Êt−1[xt|at]

)
if xt ≥ Êt−1[xt|at]

xt + κL
(
xt − Êt−1[xt|at]

)
if xt < Êt−1[xt|at].

(13)

To close the model, we assume the decision maker takes an action in each round to maximize
her continuation utility (according to her true utility function) conditional on her erroneous beliefs.

39We share KR’s intuitions that details of the environment dictate whether this is an appropriate assumption. Specif-
ically, this solution concept is on firmest ground when there is a long period of time between decisions and outcomes.
Additionally, this solution concept provides tractability.
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Critically, we assume the agent chooses an action believing she encodes outcomes correctly; that is,
she does not understand that she suffers misattribution. We can think of this dynamic strategy as
a biased-belief personal equilibrium, as it extends KR’s notion of personal equilibrium to the case
where the agent holds erroneous expectations derived from some misspecified model.

Many of our results from previous sections still apply in this extension so long as outcomes from
different actions are independent of one another. This follows from our assumption that the reference
point corresponds to expectations about the chosen action. Thus, if outcomes are independent across
actions, then updating about one action does not influence updating about another. Although our prior
analyses focus on learning about a single prospect, our predicted patterns in updating extend in this
case to learning about multiple potential prospects.40

6.1 Application: Escalating Effort in Repeated Tasks

As a final application and a demonstration of the extension above, we analyze a stylized repeated-
search problem where, in each period, a person can exert effort to improve the likelihood of a better
outcome. Imagine, for instance, a consumer researching a new purchase, or a hiring manager review-
ing potential job candidates. We consider a misattributor who attempts to learn the optimal effort
to exert. Importantly, she fails to appreciate how an increase in expectations resulting from her own
effort will cause bad outcomes (e.g., purchases that end up being lower quality than expected) to
seem even worse when they happen. As such, providing effort alters the agent’s perception of bad
outcomes in a way that suggests additional exertion is optimal, leading the agent to settle on an in-
efficiently high level of effort. Put another way, behavior exhibits a dynamic form of the sunk-cost
fallacy: the more effort a person has already exerted, the more she feels compelled to try even harder
going forward.

To model this scenario, we consider an agent learning about her average consumption in two dis-
tinct states, H and L, where the “high” state H provides higher consumption, on average, than the
“low” one, L. The state varies each periods and is denoted by ωt ∈ {H,L}. Specifically, in each
period t, ωt = H occurs with probability p ∈ (0, 1) and ωt = L occurs otherwise. If ωt = H , the
agent earns consumption utility xt = θH + εt. If ωt = L, she earns xt = θL + εt where θL < θH .
Following our baseline setup, we assume that εt ∼ N(0, σ2) and the agent has (independent) nor-
mally distributed priors over each θω; let θ̂ωt−1 denote the agent’s estimate of θω entering round t.41

While this setting might seem like a significant departure from previous sections, it is very simi-

40Independence of outcomes across actions implies that beliefs about a prospect do not update in periods where it was
not chosen. Thus, this claim about how our results extend pertains only to updating in those periods in which the prospect
was chosen.

41We assume that ωt is observed once xt is realized. Along with our assumption that the agent treats θH and θL as
independent, this ensures that updating about each parameter θω is relatively simple. Conditional on the agent’s encoded
outcomes, the updating rule for each θω is similar to the baseline model: letting Nω

t ≡
∑t
k=1 1{ωk = ω}, her estimate
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lar to our baseline model (Sections 2 through 4) except the agent simultaneously learns about the
means of two distinct prospects instead of one. As in all previous sections, the agent’s reference
point in round t is her expectation of xt: in this setting with two possible states, this expectation is
Êt−1[xt] = pθ̂Ht−1 +(1−p)θ̂Lt−1. The agent’s total utility from xt is given by Equation 2 with reference
point Êt−1[xt] in place of θ̂.

Below, we assume the agent can exert effort to increase p, the chance of the good state. However,
to build intuitions, we first consider learning under misattribution when p is fixed and highlight how
p affects long-run beliefs. A misattributor will reach biased beliefs such that θ̂H∞ > θH and θ̂L∞ < θL.
To illustrate, consider the limit where consumption in each state is nearly deterministic (i.e., σ → 0),
so the agent essentially faces a binary lottery each round with a p chance of xt = θH and a 1 − p

chance of xt = θL. If the agent were to reach correct beliefs, her reference point would be given
by pθH + (1 − p)θL. But this implies that a good outcome xt = θH would beat expectations and
consequently be encoded as better than it really was: x̂t = θH + κG

[
θH − (pθH + (1− p)θL)

]
> θH .

Similarly, a bad outcome xt = θL would fall short of expectations and be encoded as worse than it
really was. Rational expectations are thus unstable: when holding correct beliefs, estimates of θH

drift upward while those of θL drift downward. The misattributor’s biased beliefs accordingly satisfy
a fixed-point condition wherein holding expectation pθ̂H∞ + (1 − p)θ̂L∞ causes her to encode the true
outcomes θH and θL as θ̂H∞ and θ̂L∞, respectively.42 Solving the system of equations implied by these
conditions yields

θ̂H∞ = θH +
(

(1−p)κG(1+κL)
1+pκG+(1−p)κL

) [
θH − θL

]
θ̂L∞ = θL −

(
pκL(1+κG)

1+pκG+(1−p)κL

) [
θH − θL

]
.

(15)

The noteworthy feature of Equation 15 is that the agent becomes more biased about a state when it
happens less frequently (and is hence more surprising). For example, the agent underestimates the
worse outcome, xt = θL, by more when it is less likely (i.e., as p increases).43

of θω after t rounds is thus

θ̂ωt ≡
ρ2

Nω
t ρ

2 + σ2

 ∑
{k≤t : ωk=ω}

x̂k

+
σ2

Na
t ρ

2 + σ2
θω0 .

42These conditions imply that steady-state beliefs must solve the following system of equations:

θ̂H∞ = θH + κG
[
θH −

(
θ̂H∞ + (1− p)θ̂L∞

)]
θ̂L∞ = θL + κL

[
θL −

(
θ̂H∞ + (1− p)θ̂L∞

)]
.

(14)

43More generally, misattribution provides an intuitive mechanism through which the probability of an outcome natu-
rally shapes its perceived value. As such, misattribution can distort beliefs when consumers learn about goods allocated
via random processes (e.g., auctions, bargaining, or scenarios where products have uncertain availability). For instance,
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Having outlined how misattribution distorts beliefs in this new environment absent choice, we now
allow the agent to exert effort to increase the probability of the good state, p. Formally, the person
chooses this probability at the start of each period t. Her choice—denoted by pt ∈ [p0, p̄]—comes at
a cost c(pt − p0), where p̄ ∈ (p0, 1) and c(·) is convex, minimized at zero, and admits a continuous
marginal cost that is weakly convex with c′(0) = 0. We assume that p0 = 1/2—that is, the default
probability of the better outcome is 1/2 when the person exerts no effort.44

A misattributor fails to optimize effort in this setting because she does not account for how her
chosen effort—and thus her expectations—shape her perceptions of outcomes. Loosely, if the mis-
attributor were to work to increase p, her seemingly optimal effort will eventually feel inadequate.
Recall from above that increasing the chance of the good state lowers the misattributor’s perception of
the payoff in the bad state (see Equation 15). Hence, the agent will underestimate θL, and the degree
to which she does so is increasing in p. Although higher expectations also cause the misattributor to
overestimate θH by less, loss aversion ensures that perceptions of the bad state move downward by
more than those of the good state. Overall, increasing p causes a misattributor to overestimate the
payoff difference between the good and bad states by more. In turn, these new beliefs inspire the
agent to exert greater effort and to further increase p. This pattern of escalating effort will converge
to an inefficiently high steady-state level.

Proposition 7. Consider the repeated search setting described above. If λ > 1, then a misattributor

perpetually exerts excessive effort: if the full-information rational effort level, pr, is interior (pr < p̄),

then pt converges almost surely to a long-run value that strictly exceeds pr. Otherwise, if pr = p̄,

then pt converges almost surely to p̄.

Moreover, this excessive effort is costly to a misattributor: her average experienced utility at the
long-run level is strictly less than what she would achieve if she correctly inferred θH and θL. The
logic in this example may underlie, for instance, common intuitions that people exert excessive effort
when comparison shopping. More generally, the result suggests a mechanism underlying a dynamic
sunk-cost fallacy: initial effort increases the perceived value of future work, which further induces
effort.

misattributors learning about a product that is at times unavailable will come to overvalue that product. Simultaneously,
they will undervalue their fall-back option. Consequently, a firm may choose to limit supply when first introducing a
high-quality product: those lucky enough to receive the good early may overstate its quality, thereby increasing demand
later.

44The assumptions on c(·) simplify the exposition, as they guarantee a unique optimal choice each round. The as-
sumption that p̄ < 1 reflects the idea that it is not possible to eliminate all uncertainty. Moreover, p̄ < 1 rules out paths
where the person reaches pt = 1 and remains there simply because she lacks feedback about θL. Finally, a “default”
value p0 = 1/2 ensures that the marginal benefit of increasing p is always positive. This rules out pathological cases
where the agent actually prefers a smaller chance of the better outcome, which can happen when p0 is sufficiently small
given the risk aversion inherent in the KR solution concept.
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7 Conclusion

We conclude by contrasting our approach with alternative models and by highlighting ways that
future empirical work could explore the implications of our model. Additionally, we discuss two
natural extensions of our framework: (1) incorporating misattribution of news utility (Kőszegi and
Rabin 2009) and (2) extending misattribution to social-learning environments.

In addition to the models of mistaken learning noted in the introduction, we build on an emerging
literature that examines limited or distorted memory. Wilson (2014) follows a rational approach with
bounded memory and examines the optimal coarsening of information given a memory constraint.
This approach yields predictions distinct from misattribution as it implies that first impressions dom-
inate subsequent evaluations. Mullainathan (2002) provides a model of limited rationality which can
generate a form of overreaction to information through memory associations. Relatedly, Bordalo,
Gennaioli, and Shleifer (2017b) consider a model of selective memory in which salient events are
more prone to recall. In their model, the agent correctly encodes outcomes to memory, but the con-
text of her current choice influences which past outcomes she recalls; in contrast, the agent in our
model erroneously encodes outcomes. While in some settings these two models both predict that
particularly good or bad experiences “stand out”, they offer different predictions regarding an agent’s
perceptions of past outcomes. Finally, our model extends a literature studying distorted beliefs in
settings where an agent’s utility depends directly on those beliefs.45

A natural avenue for empirical exploration is our prediction of belief-based contrast effects—a
fixed outcome will seem better when the previous one was worse. We predict that contrast effects
increase when the perceived correlation between today’s outcome and tomorrow’s is stronger.46 Fur-
thermore, in order to separate effects generated by our mechanism from other potential explanations—
e.g. the Gambler’s Fallacy (Chen, Moskowitz, and Shue 2016)—our model suggests comparing cir-
cumstances where outcomes have utility consequences with those that don’t. Our model predicts that
contrast effects will be enhanced the more that a person cares about the outcomes she faces. This
empirical strategy can also help distinguish our mechanism from base-rate neglect (e.g. Benjamin,
Bodoh-Creed, and Rabin 2016) or the representativeness heuristic (e.g. Bordalo, Gennaioli, and
Shleifer 2017a), which both predict recency effects and extrapolative beliefs. For instance, one could
test whether investors’ forecasts are more extrapolative about companies they hold a stake in relative
to those they do not. Testing whether such forecasts respond differently to losses versus gains is yet
another way to distinguish our mechanism from these alternative explanations.

45In contrast to many models in this literature (e.g., Bénabou and Tirole 2002; Brunnermeier and Parker 2005),
a misattributor does not purposefully manipulate her beliefs to maximize her belief-based utility. Rather, she forms
distorted beliefs mechanically as a result of the bias in her perceptions.

46Indeed, Hartzmark and Shue (2018) find that contrast effects among investors stemming from prior-day earnings
announcements are larger for within-sector peers than across industries.
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Finally, we note two potential extensions of our model. First, throughout this paper we have omit-
ted the notion of “news utility” (Kőszegi and Rabin 2009), in which a person experiences elations and
disappointments from changes in beliefs about future consumption. News utility provides a channel
for monetary outcomes to directly influence contemporaneous experienced utility, and thus incor-
porating misattribution of news utility would naturally extend our predictions to settings where the
outcomes are monetary earnings. Moreover, this extension introduces novel comparative statics. To
illustrate, consider a worker who agrees to a new position for a pre-specified amount of time, and
imagine that her first encounter with the new job is worse than expected. With misattribution of news
utility, her evaluation of that first experience will be worse the longer she committed to the job—
that first episode creates a greater sense of disappointment about the future when the duration of her
contract is longer.

Second, our model can be reframed as an interpersonal bias where an observer neglects how expec-
tations shape the experiences of others. For instance, a person reading online reviews (e.g., Yelp) for
a product may fail to appreciate that a bad rating sometimes reflects the reviewer’s high expectations
rather than poor quality. In scenarios where consumers form their expectations based on predeces-
sors’ reviews, misattribution—that is, taking others’ ratings at face value without accounting for their
expectations—can hinder social learning. Additionally, these settings may provide data-rich environ-
ments to explore the empirical implications of our model. If such social misattribution occurs, we
would expect ratings to demonstrate the dynamic patterns described in this paper.
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BÉNABOU, R. AND J. TIROLE (2002): “Self-Confidence and Personal Motivation.” The Quarterly
Journal of Economics, 117(3), 871–915.

BENJAMIN, D., A. BODOH-CREED, AND M. RABIN (2016): “Base-Rate Neglect: Foundations
and Applications.” Working Paper.

BERTRAND, M., AND S. MULLAINATHAN (2001): “Are CEOs Rewarded for Luck? The Ones
Without Principals Are.,” Quarterly Journal of Economics, 116(3), 901–932.

BHARGAVA, S. (2007): “Perception is Relative: Contrast Effects in the Field.” Working Paper.

BHARGAVA, S. AND R. FISMAN (2014): “Contrast Effects in Sequential Decisions: Evidence from
Speed Dating.” Review of Economics and Statistics, 96(3), 444–457.

BOHREN, A. (2016): “Informational Herding with Model Misspecification.” Journal of Economic
Theory, 163, 222-247.

BOHREN, A. AND D. HAUSER (2018): “Social Learning with Model Misspecification: A Frame-
work and a Robustness Result.” Working paper.

BOULDING, W., A. KALRA, R. STAELIN, AND V. ZEITHAML (1993): “A Dynamic Process Model
of Service Quality: From Expectations to Behavioral Intentions.” Journal of Marketing Research,
30, 7—27.

BORDALO, P., N. GENNAIOLI, AND A. SHLEIFER (2017a): “Diagnostic Expectations and Credit
Cycles.” Working Paper.

BORDALO, P., N. GENNAIOLI, AND A. SHLEIFER (2017b): “Memory, Attention and Choice.”
Working Paper.

BROWNBACK, A. AND M. KUHN (2019): “Attribution Bias, Blame, and Strategic Confusion in
Punishment Decisions.” Games and Economic Behavior, Forthcoming.

BRUNNERMEIER, M.K. AND J.A. PARKER (2005): “Optimal Expectations.” American Economic
Review, 95(4), 1092–1118.

BURGSTAHLER, D. AND I. DICHEV (1997): “Earnings Management to Avoid Earnings Decreases
and Losses. Journal of Accounting and Economics, 24, 99–126.

BUSHONG, B. AND T. GAGNON-BARTSCH (2018): “Misattribution of Reference Dependence:
Evidence from Real-Effort Experiments.” Working Paper.

34



CARD, D., AND G. DAHL (2011): “Family Violence and Football: The Effect of Unexpected
Emotional Cues on Violent Behavior.” Quarterly Journal of Economics, 126(1), 103–143.

CHAMBERS, C., AND P. HEALY (2012): “Updating towards the signal.” Economic Theory, 50,
765–786.

CHARNESS, G. AND D. LEVIN (2005): “When Optimal Choices Feel Wrong: A Laboratory Study
of Bayesian Updating, Complexity, and Affect.” American Economic Review, 95(4), 1300–1309.

CHEN, D., T. MOSKOWITZ, AND K. SHUE (2016): “Decision-Making Under the Gambler’s Fal-
lacy: Evidence from Asylum Judges, Loan Officers, and Baseball Umpires.” Quarterly Journal of
Economics, 131(3), 1181–1241.

CHIANG, Y., D. HIRSHLEIFER, Y. QIAN, AND A. SHERMAN (2011): “Do Investors Learn From
Experience? Evidence from Frequent IPO Investors.” Review of Financial Studies, 24(5), 1560–
1589.

COLE, S., A. HEALY, AND E. WERKER (2012): “Do Voters Demand Responsive Governments?
Evidence from Indian Disaster Relief,” Journal of Development Economics, 97(2), 167–181.

CRAWFORD, V., AND J. MENG (2011): “New York City Cabdrivers’ Labor Supply Revisited:
Reference-Dependent Preferences with Rational- Expectations Targets for Hours and Income.”
American Economic Review, 101(5), 1912–1932.

DEGROOT, M. (1970): Optimal Statistical Decisions, McGraw-Hill, New York.

DILLENBERGER, D. AND K. ROZEN (2015): “History-Dependent Risk Attitude.” Journal of Eco-
nomic Theory, 157, 445–477.

DUTTON, D. AND A. AARON (1974): “Some Evidence for Heightened Sexual Attraction Under
Conditions of High Anxiety.” Journal of Personality and Social Psychology, 30, 510–517.

EHLING, P., A. GRANIERO, AND C. HEYERDAHL-LARSEN (2018): “Asset Prices and Portfolio
Choice with Learning from Experience.” Review of Economic Studies, 85(3), 1752–1780.

EPSTEIN, L., J. NOOR, AND A. SANDRONI (2010): “Non-Bayesian Learning.” The B.E. Journal
of Theoretical Economics, 10(1).

ERKAL, N., L. GANGADHARAN, AND B.H. KOH (2019): “Attribution Biases in Leadership: Is it
Effort or Luck?” Working Paper.

ESPONDA, I. AND D. POUZO (2016): “Berk-Nash Equilibrium: A Framework for Modeling Agents
with Misspecified Models.” Econometrica, 84(3), 1093–1130.

EYSTER, E. AND M. RABIN (2010): “Naive Herding in Rich-Information Settings.” American
Economic Journal: Microeconomics, 2(4), 221–243.

ERICSON, K. AND A. FUSTER (2011): “Expectations as Endowments: Evidence on Reference-
Dependent Preferences from Exchange and Valuation Experiments.” Quarterly Journal of Eco-
nomics, 126(4), 1879–907.

35



FREIXAS, X., R. GUESNERIE, AND J. TIROLE (1985): “Planning under Incomplete Information
and the Ratchet Effect.” Review of Economic Studies, 52(2), 173–191.

FRICK, M., R. IIJIMA, AND Y. ISHII (2018): “Misinterpreting Others and the Fragility of Social
Learning.” Working paper.

FRYER, R., P. HARMS, AND M. JACKSON (2018): “Updating Beliefs when Evidence is Open to
Interpretation: Implications for Bias and Polarization.” Journal of the European Economics Associ-
ation, Forthcoming.

FUDENBERG, D., G. ROMANYUK, AND P. STRACK (2017): “Active Learning with a Misspecified
Prior.” Theoretical Economics, 12, 1155–1189.

GALLAGHER, J. (2014): “Learning about an Infrequent Event: Evidence from Flood Insurance
Take-up in the US.” American Economic Journal: Applied Economics, 6(3), 206–233.

GEERS, A. AND G. LASSITER (1999): “Affective Expectations and Information Gain: Evidence
for Assimilation and Contrast Effects in Affective Experience.” Journal of Experimental Social
Psychology, 35(4), 394–413.

GENNAIOLI, N., Y. MA, AND A. SHLEIFER (2015): “Expectations and Investment.” NBER
Macroeconomics Annual, 30, 379–442.

GILBERT, D. AND P. MALONE (1995): “The correspondence bias.” Psychological Bulletin, 117(1):
21–38.

GILL, D. AND V. PROWSE (2012): “A Structural Analysis of Disappointment Aversion in a Real
Effort Competition.” American Economic Review, 102(1), 469–503.

GNEEZY, U., L. GOETTE, C. SPRENGER, AND F. ZIMMERMANN (2017): “The Limits of
Expectations-Based Reference Dependence.” Journal of the European Economic Association, 15,
861–876.

GOETTE, L., A. HARMS, AND C. SPRENGER (2019): “Randomizing Endowments: An Experi-
mental Study of Rational Expectations and Reference-Dependent Preferences.” American Economic
Journal: Microeconomics, 11(1), 185–207.

GREENWOOD, R. AND A. SHLEIFER (2014): “Expectations of Returns and Expected Returns.”
Review of Financial Studies, 27(3), 714–746.

HAGGAG, K. AND D. POPE (2018): “Attribution Bias in Economic Decision Making.” Review of
Economic Studies, Forthcoming.

HAISLEY, E. AND G. LOEWENSTEIN (2011): “It’s Not What You Get But When You Get It: The
Effect of Gift Sequence on Deposit Balances and Customer Sentiment in a Commercial Bank.”
Journal of Marketing Research, 48(1), 103–115.

HASELHUHN, M., D. POPE, AND M. SCHWEITZER (2012): “Size Matters (and so Does Expe-
rience): How Personal Experience with a Fine Influences Behavior.” Management Science, 58(1),
35–51.

36



HARTZMARK, S. AND K. SHUE (2018): “A Tough Act to Follow: Contrast Effects in Financial
Markets.” Journal of Finance, Forthcoming.

HEFFETZ, O. AND J. LIST (2014): “Is the Endowment Effect an Expectations Effect?” Journal of
the European Economic Association, 12, 1396–1422.
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HEIDHUES, P., B. KŐSZEGI, AND P. STRACK (2019): “Convergence in Misspecified Learning
Models with Endogenous Actions.” Working Paper.

HIGHHOUSE, S. AND A. GALLO (1997): “Order Effects in Personnel Decision Making.” Human
Performance, 10(1), 31–46.

HO, T. AND Y. ZHENG (2004): “Setting Customer Expectations in Service Delivery: An Integrated
Marketing-Operations Perspective.” Management Science, 50(4), 479–488.

HOGARTH, R. AND H. EINHORN (1992): “Order Effects in Belief Updating: The Belief-
Adjustment Model.” Cognitive Psychology, 24, 1–55.
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KŐSZEGI, B., AND M. RABIN (2009): “Reference-Dependent Consumption Plans.” American Eco-
nomic Review, 99(3), 909–936.

KUSHNER, H. AND G. YIN (2003): Stochastic Approximation and Recursive Algorithms and Ap-
plications, Vol. 35, Springer.

KUHNEN, C. (2015): “Asymmetric Learning from Financial Information.” Journal of Finance,
70(5), 2029–2062.

LAFFONT, J., AND J. TIROLE (1988): “The Dynamics of Incentive Contracts.” Econometrica,
56(5), 1153–1175.

LOEWENSTEIN, G. AND D. PRELEC (1993): “Preferences for Sequences of Outcomes.” Psycho-
logical Review, 100(1), 91–108.

LOOMES, G., AND R. SUGDEN (1986): “Disappointment and Dynamic Consistency in Choice
under Uncertainty.” Review of Economic Studies, 53(2), 271–282.
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Appendix

A Proofs of Results in the Main Text

Proof of Lemma 1.

Proof. Without loss of generality, suppose θ0 = 0. Thus, for any t ∈ {1, . . . , T}, we have θ̂t =
αt
∑t

k=1 x̂k = αt
∑t

k=1[xt+κt(xt−θ̂t−1)]. We use induction to prove the following: θ̂t = αt
∑t

k=1 ξ
t
kxt

where ξtk = (1 + κk)
∏t−1

j=k[1− αjκj+1] for k < t and ξtt = (1 + κt). To establish the base case, note
that θ̂1 = α1[x1 +κ1(x1− θ0)] = α1(1 +κ1)x1. Now suppose the claim holds for period t > 1. Then

θ̂t+1 = αt+1

t+1∑
k=1

x̂k

= αt+1

{
[(1 + κt+1)xt+1 − κt+1θ̂t] +

1

αt
θ̂t

}
= αt+1

{
(1 + κt+1)xt+1 + [1− αtκt+1]

t∑
k=1

(1 + κk)

(
t−1∏
j=k

[1− αjκj+1]

)
xk

}

= αt+1

{
(1 + κt+1)xt+1 +

t∑
k=1

(1 + κk)

(
t∏

j=k

[1− αjκj+1]

)
xk

}
.

Hence, the induction step holds, establishing the claim.
�

Proof of Proposition 1.

Proof. The results follow from Lemma 1. If beliefs are monotonic, then κL < 1+σ2/ρ2. This implies
[1− αtκt+1] ∈ (0, 1) for all t ∈ {1, . . . , T − 1}. Consider t, τ ∈ {1, . . . , T} such that κt = κτ .

Part 1. If t > τ , then Lemma 1 implies that ξTt −ξTτ = (1−κt)
∏T−1

j=t [1−αjκj+1]−(1−κτ )
∏T−1

j=τ [1−
αjκj+1] = (1−κt)

∏T−1
j=t [1−αjκj+1]

(
1−

∏t−1
j=τ [1− αjκj+1]

)
= ξTt

(
1−

∏t−1
j=τ [1− αjκj+1]

)
> 0.

The inequality follows since 1− αjκj+1 ∈ (0, 1) for all relevant j. It is obvious that if instead τ > t,
the previous inequality would reverse.

Part 2. Also from Lemma 1, ξTT = 1+κT > 1 and limT→∞ ξ
T
t = (1+κt) limT→∞

∏T−1
j=t [1−αjκj+1] ≤

(1 + κt) limT→∞
∏T−1

j=t [1 − αjκ
G]. Since

∑∞
j=t αj diverges,

∏∞
j=t[1 − αjκ

G] = 0, completing the
proof of Part 2.

Part 3. From above, if τ < t, then ξTt /ξ
T
τ = 1/

(∏t−1
j=τ [1− αjκj+1]

)
. Note that αj is increasing in

ρ2/σ2, and thus
∏t−1

j=τ [1−αjκj+1] is decreasing in ρ2/σ2 since each term of the product is decreasing
in ρ2/σ2. Hence ξTt /ξ

T
τ is increasing in ρ2/σ2. �
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Proof of Proposition 2.

Proof. We begin by proving a lemma that describes the final belief after two outcomes, θ̂2. The
lemma shows that if beliefs are convex, then θ̂2 is maximized whenever the higher outcome happens
last. We then extend this preliminary result to an arbitrary number of outcomes T > 2.

Lemma A.1. Consider any a, b ∈ R such that a > b. Let θ̂d2 denote the mean belief following the
decreasing sequence (a, b), and let θ̂i2 denote that following the increasing sequence (b, a). If beliefs
are convex, then θ̂i2 > θ̂d2 .

Proof of Lemma A.1. Given our normality assumptions, the misattributor’s posterior over θ after t
observations is normally distributed with mean θ̂t, where

θ̂t =

(
σ2

tρ2 + σ2

)
θ0 +

(
ρ2

tρ2 + σ2

) t∑
τ=1

x̂τ . (A.1)

From Equation A.1, we can write θ̂i2 = α2(b̂i1 + âi2) + (1 − 2α2)θ0 where b̂i1 and âi2 are the encoded
values of b and a respectively when facing the increasing sequence (b, a). Likewise, θ̂d2 = α2(âd1 +
b̂d2) + (1 − 2α2)θ0, where âd1 and b̂d2 are the encoded values when facing the decreasing sequence
(a, b). Let κi1 = κG1{b ≥ θ0} + κL1{b < θ0}, and κi2 = κG1{a ≥ θ̂i1} + κL1{a < θ̂i1} where
θ̂i1 = α1(1 + κi1)(b− θ0) + θ0. Similarly, let κd1 = κG1{a ≥ θ0}+ κL1{a < θ0}, and κd2 = κG1{b ≥
θ̂d1}+κL1{b < θ̂d1}where θ̂d1 = α1(1+κd1)(a−θ0)+θ0. Hence âd1 = a+κd1(a−θ0), b̂i1 = b+κi1(b−θ0),
âi2 = a+κi2(a− θ0−α1[1 +κi1](b− θ0)), and b̂d2 = b+κd2(b− θ0−α1[1 +κd1](a− θ0)). This implies
θ̂i2 > θ̂d2 if and only if

κi1(b− θ0) + κi2(a− θ0 − α1[1 + κi1](b− θ0))

> κd1(a− θ0) + κd2(b− θ0 − α1[1 + κd1](a− θ0)) (A.2)

Letting ã = (a− θ0) and b̃ = (b− θ0), Condition A.2 reduces to

κi1b̃+ κi2(ã− α1[1 + κi1]b̃) > κd1ã+ κd2(b̃− α1[1 + κd1]ã). (A.3)

There are three cases to consider depending on whether ã and b̃ have the same sign. When ã and b̃
have the same sign, then κi1 = κd1 and condition A.3 reduces as follows, which is useful for checking
the various cases: θ̂i2 > θ̂d2 if and only if

κi2
(
1 + α1[1 + κi1])(ã− b̃

)
− (κd2 − κi2)

(
b̃− α1[1 + κd1]ã

)
> κi1(ã− b̃). (A.4)

The remainder of the proof walks through all relevant cases before imposing convexity; this analysis
will be useful for Corollary 1 where we relax convexity.

Case 1: θ0 < b < a. This implies κi1 = κd1 = κG. There are 3 sub-cases to consider:

Case 1.a. Suppose both a and b come as gains if received in period 2. This implies κi2 = κd2 = κG.
Hence, Condition A.4 amounts to κG

(
1 +α1[1 +κG])(ã− b̃

)
> κG(ã− b̃), which is true given ã > b̃.
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Case 1.b. Suppose both a and b come as losses if received in period 2. This implies κi2 = κd2 = κL.
Hence, Condition A.4 amounts to κL

(
1 +α1[1 + κG])(ã− b̃

)
> κG(ã− b̃), which is true given ã > b̃

and κL > κG.

Case 1.c. Suppose only a comes a gain if received in period 2. This implies κi2 = κG and κd2 = κL.
Hence, Condition A.4 amounts to κG

(
1+α1[1+κG])(ã−b̃

)
−(κL−κG)

(
b̃−α1[1+κG]ã

)
> κG(ã−b̃),

which reduces to κG
(
α1[1 + κG])(ã − b̃

)
− (κL − κG)

(
b̃ − α1[1 + κG]ã

)
> 0. Since b̂d2 comes as a

loss, it must be that b̃− α1[1 + κG]ã < 0, meaning the previous condition holds.

Case 2: b < a < θ0. This implies κi1 = κd1 = κL. There are 3 sub-cases to consider:

Case 2.a. Suppose both a and b come as losses if received in period 2. This implies κi2 = κd2 = κL.
Hence, Condition A.4 amounts to κL

(
1 +α1[1 +κL])(ã− b̃

)
> κL(ã− b̃), which is true given ã > b̃.

Case 2.b. Suppose both a and b come as gains if received in period 2. This implies κi2 = κd2 = κG.
Hence, Condition A.4 amounts to κG

(
1 + α1[1 + κL])(ã− b̃

)
> κL(ã− b̃), which holds if and only

if κG
(
1 + α1[1 + κL]) > κL. Using the definitions of κG and κL and simplifying reveals that this

condition fails only if λ− 1 > α1(1 + ηλ). Furthermore, for both a and b to come as gains in period
2 implies that α1(1 + κL) > 1. Thus, there exist values of (a, b) meeting the conditions of subcase
2.b for which recency fails only if λ− 1 > α1(1 + ηλ) and α1(1 + κL) > 1.

Case 2.c. Suppose only a comes as a gain if received in period 2. This implies κi2 = κG and
κd2 = κL. Hence, Condition A.4 amounts to κG

(
1+α1[1+κL])(ã− b̃

)
−(κL−κG)

(
b̃−α1[1+κL]ã

)
>

κL(ã− b̃). This condition reduces to

κGα1(1 + κL)(ã− b̃) > (κL − κG)(1− α1(1 + κL))ã. (A.5)

The left-hand side of Condition A.5 is always positive, while the right-hand side is positive if and only
if α1(1 + κL) > 1 (i.e., beliefs are not convex). Thus, Condition A.5 always holds if α1(1 + κL) < 0,
but may fail otherwise. To see when it fails, notice that A.5 fails when

b̃ >
1

κG

(
κL − κL − κG

α1(1 + κL)

)
. (A.6)

Since this subcase assumes that b̂d2 comes as a loss, it must be that b̃ < α1(1 + κL). Hence, for there
to exist a value b̃ < 0 that falls into case 2.c and satisfies Condition A.6, we require

1

κG

(
κL − κL − κG

α1(1 + κL)

)
> α1(1 + κL). (A.7)

Using the definitions of κG and κL, Condition A.7 is equivalent to λ− 1 > α1(1 + ηλ). In summary,
there exist values of (a, b) meeting the conditions of subcase 2.c for which the increasing-sequence
bias fails to hold (i.e., θ̂d2 > θ̂i2) only if λ − 1 > α1(1 + ηλ) and α1(1 + κL) > 1. Assuming these
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conditions hold, values (a, b) fail to generate an increasing-sequence bias only if

1

κG

[
κL − κL − κG

α1(1 + κL)

]
a < b < α1(1 + κL)a. (A.8)

Case 3: b < θ0 < a. This implies κi1 = κL, κd1 = κG, κi2 = κG, and κd2 = κL. Hence, Condition
A.3 amounts to κLb̃ + κG(ã − α1[1 + κL]b̃) > κGã + κL(b̃ − α1[1 + κG]ã) ⇔ −α1κ

G[1 + κL]b̃ >
−α1κ

L[1 + κG]ã. This condition always holds given ã > 0 > b̃.

In summary, the only cases where the increasing-sequence bias might not hold are 2.b and 2.c. As
noted, however, θ̂i2 > θ̂d2 in both of these ambiguous cases whenever α1(1 + κL) < 1, i.e., beliefs are
convex. �

Proof of main proposition. Let X = {x1, · · · , xT} be an arbitrary set of T distinct elements of
R. Let S(X ) be the set of all distinct sequences formed from elements of X . Consider sequence
xT ∈ S(X ) and let θ̂T (xT ) be the misattributor’s estimate following xT . We say xT is increasing
if xTi < xTi+1 for all i = 1, . . . , T − 1. Toward a contradiction, suppose xT is not increasing but
xT = arg maxx̃T∈S(X ) θ̂T (x̃T ). Hence, there must exist adjacent xTi , xTi+1 such that xTi > xTi+1. Fix
θ̂i−1 entering round i. From Lemma A.1, permuting xTi and xTi+1 would generate a higher estimate
θ̂i+1 than if the agent experiences (xTi , x

T
i+1). Hence, following this permutation, the person has

a higher belief entering round i + 2 than under the original sequence. Again from Lemma A.1,
convexity implies that each θ̂i+1 is increasing in θ̂i−1, and hence θ̂T must increase in θ̂i+1. Thus
permuting xTi and xTi+1 increases θ̂T , implying a contradiction.

Proof of Corollary 1.

Proof. Part 1. Consider the proof of Lemma A.1. The relevant cases given a > θ0 are Cases 1 and
3. However, in both of these cases, we have θ̂i2 > θ̂d2 without assuming anything beyond a > b and
a > θ0.

Part 2. Again consider the proof of Lemma A.1. Recall that θ̂d2 > θ̂i2 is possible only in cases 2.b and
2.c, and only then when beliefs are not convex. If beliefs are not convex, then θ̂d2 > θ̂i2 in cases 2.b and
2.c only if λ > 1 +α1(1 + ηλ) ≡ λ̄. And since beliefs are not convex, 1 < α1(1 +κL) < α1(1 + ηλ),
implying λ̄ > 2. �

Proof of Proposition 3.

Proof. Aside from establishing almost-sure convergence to the steady-state, the results of Proposi-
tion 3 do not depend on our assumption of normally-distributed outcomes. Thus, where possible, we
prove the results in a somewhat more general environment. Specifically, suppose consumption utility
in each period t is xt = θ + σzt, where each zt is an i.i.d. realization of a mean-zero, unit-variance
random variable Z that has support R and a continuously differentiable distribution FZ (and a density
denoted by fZ). Parameters θ and σ thus denote the true mean and standard deviation of outcomes,
respectively. When Z is a standard normal random variable, this more-general environment corre-
sponds to our original baseline model.
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Part 1. Step one: unique steady-state belief. Let ∆(θ̂) be as defined in Equation 8, so ∆(θ̂) =
E[x̂t|θ̂t−1 = θ̂] − θ̂, where E is with respect to the true distribution distributional parameters, (θ, σ).
From Equation 4, we have E[x̂t|θ̂t−1 = θ̂] = θ + κG Pr(xt ≥ θ̂)(E[xt|xt ≥ θ̂] − θ̂) + κL Pr(xt <
θ̂)(E[xt|xt < θ̂]− θ̂) = θ − k Pr

(
xt < θ̂

)(
θ̂ − E[xt|xt < θ̂]

)
where

k ≡ κL − κG

1 + κG
=

(λ− 1)(η − η̂)

(1 + η)(1 + η̂λ)
. (A.9)

Hence, a steady-state belief θ̂ solves

∆(θ̂) = θ − kH(θ̂; θ, σ)− θ̂ = 0, (A.10)

where

H(θ̂; θ, σ) ≡ Pr(xt < θ̂)

(
θ̂ − E[xt|xt < θ̂]

)
. (A.11)

Note that H(θ̂; θ, σ) = θ̂FZ

(
θ̂−θ
σ

)
−
∫ θ̂
−∞ x

1
σ
fZ
(
x−θ
σ

)
dx and that H(θ̂; θ, σ) > 0 for all finite θ̂.

Furthermore, H(θ̂; θ, σ) is a strictly increasing function of θ̂:

∂

∂θ̂
H(θ̂; θ, σ) = θ̂

1

σ
fZ

(
θ̂ − θ
σ

)
+ FZ

(
θ̂ − θ
σ

)
− θ̂ 1

σ
fZ

(
θ̂ − θ
σ

)
= FZ

(
θ̂ − θ
σ

)
> 0. (A.12)

Hence ∆(θ̂) is a strictly decreasing function of θ̂ with range R. Since θ̂∞ is defined by the solution
to ∆(θ̂) = 0, it therefore exists and is unique.

Step two: almost-sure convergence to the steady-state belief. Let θ̂∞ denote the unique steady-state
belief that solves Equation A.10. We now show that the sequence of beliefs 〈θ̂t〉 indeed converges
to θ̂∞. Our convergence arguments, which rely on stochastic approximation theory, are similar to
those in Esponda and Pouzo (2016) and in particular Heidhues, Kőszegi, and Strack (2019). As those
authors note, while encoded outcomes are not independent (x̂t is a function of θ̂t−1, which depends
on x1, . . . , xt−1), they become approximately independent as t grows large and hence θ̂t changes a
small amount (on average) in response to any new outcome. Roughly put, the behavior of θ̂t will
therefore be described by the deterministic ordinary differential equation θ̂′(t) = ∆(θ̂(t)), where ∆
is the average deviation of encoded outcomes assuming the agent holds expectation θ̂(t) (Equation
8).

For this part—and only this part—of the proof, we return to our baseline model (with normally-
distributed outcomes and priors) to apply the method noted above. Specifically, we assume xt = θ +
σzt where zt are realizations of independent standard normal random variables, and the agent begins
with a prior θ ∼ N(θ0, ρ

2).While convergence obtains more generally whenever the conditions below
are met, it is particularly straightforward to verify these conditions for the normal case given our
derivation of θ̂t for normally-distributed outcomes in Section 3. From Equation 6, the misattributor’s
beliefs update according to

θ̂t = θ̂t−1 + α̂t[xt − θ̂t−1], (A.13)

where α̂t ≡ (1 + κt)αt and αt = ρ2/(tρ2 + σ2). In this case, we can appeal to Theorem 5.2.1 in
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Kushner and Yin (2003), who provide sufficient conditions for the convergence of dynamic systems
that take this form. For our particular setting, the 4 conditions below are sufficient for 〈θ̂t〉 to converge
almost surely to the unique value θ̂∞ characterized by the solution to ∆(θ̂) = 0:

A1.
∑∞

t=1 α̂t =∞ and limt→∞ α̂t = 0.

A2.
∑∞

t=1(α̂t)
2 <∞.

A3. supt E[|x̂t − θ̂t−1|2|θ] <∞, where the expectation is taken at time t = 0.

A4. There exists a continuous function ḡ : R → R and a sequence of random variables 〈βt〉 such
that E[x̂t − θ̂t−1|θ̂t−1] = ḡ(θ̂t) + βt and

∑∞
t=1 α̂t|βt| <∞ w.p. 1.

We now show that Conditions A1 – A4 hold:

Condition A1. Note that
∞∑
t=1

α̂t =
∞∑
t=1

(1 + κt)αt ≥ (1 + κG)
∞∑
t=1

αt = (1 + κG)
∞∑
t=1

ρ2

tρ2 + σ2
. (A.14)

Since the final sum diverges to∞,
∑∞

t=1 α̂t must as well. Furthermore, it is clear that limt→∞ α̂t = 0

Condition A2. Note that
∞∑
t=1

(α̂t)
2 =

∞∑
t=1

(1 + κt)
2α2

t ≤ (1 + κL)2

∞∑
t=1

α2
t . (A.15)

From the definition of αt,
∑∞

t=1(αt)
2 <

∑∞
t=1

1
t2
<∞. Thus,

∑∞
t=1(α̂t)

2 <∞.

Condition A3. We must show supt E[|x̂t − θ̂t−1|2|θ] < ∞. Note that x̂t − θ̂t−1 = xt − κt(xt −
θ̂t−1)− θ̂t−1 = (1 + κt)(xt − θ̂t−1). Letting θt−1 be the rational estimate of θ following t− 1 rounds,
we have

sup
t

E[|x̂t − θ̂t−1|2|θ] ≤ (1 + κL) sup
t

E[|(xt − θt−1) + (θt−1 − θ̂t−1)|2|θ]. (A.16)

From Minkowski’s Inequality,√
E[|(xt − θt−1) + (θt−1 − θ̂t−1)|2|θ] ≤

√
E[|xt − θt−1|2|θ] +

√
E[|θt−1 − θ̂t−1|2|θ]. (A.17)

Since E[|xt − θt−1|2|θ] is finite, we need only examine the second term on the right-hand side of
Equation A.17. Using Lemma 1, we can write

θt−1 − θ̂t−1 = αt−1

t−1∑
k=1

xk − αt−1

t−1∑
k=1

ξt−1
k xk = αt−1

t−1∑
k=1

(
1− ξt−1

k

)
xk, (A.18)
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where ξt−1
k , defined in Lemma 1, are functions of κj and αj for j ∈ {k, . . . , t− 1}. Thus√

E[|θt−1 − θ̂t−1|2|θ] ≤ αt−1

t−1∑
k=1

√
E[|(1− ξt−1

k )xk|2|θ]. (A.19)

We now argue that for all t ≥ 2 and all k ≤ t − 1, the value |1 − ξt−1
k | is bounded from above by

some finite constant Q. Given that κt ∈ {κG, κL} and the definition of αj , it is clear that such a Q
exists for any finite t. Thus, we need only consider the case where t→∞. In this case, we have

lim
t→∞

ξt−1
k = (1 + κk) lim

t→∞

t−2∏
j=k

[1− αjκj+1].

For sufficiently large j, |1 − αjκj+1| < 1. This means that, fixing k, there exists some t̄ ≥ k such
that |ξt−1

k | is decreasing in t for t ≥ t̄. Thus, given that |1− ξt−1
k | is bounded by some finite Q,

√
E[|θt−1 − θ̂t−1|2|θ] ≤ Qαt−1

t−1∑
k=1

√
E[|xk|2|θ]

= Qαt−1

t−1∑
k=1

√
σ2 + θ2

= Q
ρ2

ρ2 + σ2/(t− 1)

√
σ2 + θ2

≤ Q
√
σ2 + θ2, (A.20)

where the first equality follows from the fact that E[|xk|2|θ] = Var(xk) + E[xk|θ]2, and the second

equality follows from the fact that for all t ≥ 2, αt−1 = ρ2/((t−1)ρ2+σ2). Thus,
√
E[|θt−1 − θ̂t−1|2|θ]

is finite as desired.

Condition A4. We take ḡ : R → R to be the function ∆ defined in Equation 8 and thus βt =
E[x̂t − θ̂t−1|θ̂t−1] − ∆(θ̂t−1). As such, it is immediate that

∑∞
t=1 α̂t|βt| < ∞ w.p. 1, as required.

Furthermore, from Equation 8, it is straightforward that ∆(·) is continuous given that FZ and fZ are
continuous.

Part 2. Let θ̂ denote the unique solution to Equation A.10. We first establish underestimation (i.e.,
θ̂ < θ when λ > 1). For sake of contradiction, suppose λ > 1 and θ̂ ≥ θ. From Equation A.10, θ̂
solves θ̂ + kH(θ̂; θ, σ) = θ. Because H(θ̂; θ, σ) > 0, θ̂ + kH(θ̂; θ, σ) exceeds θ ⇔ k > 0, which
holds ⇔ λ > 1, implying a contradiction. We now turn to comparative statics. Since θ̂ satisfies
∆(θ̂) ≡ θ − kH(θ̂; θ, σ) − θ̂ = 0, the implicit function theorem implies that, for any parameter of

interest w ∈ {σ, η, η̂, λ}, we have ∂θ̂
∂w

= −
(
∂∆(θ̂)

∂θ̂

)−1
∂∆(θ̂)
∂w

. Since ∂∆(θ̂)

∂θ̂
= −k ∂

∂θ̂
H(θ̂; θ, σ)− 1 < 0,

∂θ̂
∂w

has the same sign as ∂∆(θ̂)
∂w

. To show that variance has a decreasing effect on θ̂, suppose λ > 1 so
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θ̂ < θ. Then ∂∆(θ̂)
∂σ

= −k ∂H(θ̂;θ,σ)
∂σ

, and thus

∂∆(θ̂)

∂σ
= −k ∂

∂σ

(
θ̂FZ

(
θ̂ − θ
σ

)
−
∫ θ̂−θ

σ

−∞
[θ + σu]fZ (u) du

)

= k

((
θ̂ − θ
σ2

)
θ̂fZ

(
θ̂ − θ
σ

)
−

(
θ̂ − θ
σ2

)
[θ + σu]fZ (u)

∣∣∣∣
u= θ̂−θ

σ

+

∫ θ̂−θ
σ

−∞
ufZ (u) du

)

= k

∫ θ̂−θ
σ

−∞
ufZ (u) du

< 0,

where the second line follows from Leibniz’s Rule and the final inequality holds because the value of
the preceding integral is negative given θ̂ < θ.

Part 3. For a parameter w ∈ {η, η̂, λ}, the analysis above shows that ∂θ̂
∂w

has the same sign as ∂∆(θ̂)
∂w

.
Given that ∆(θ̂) = θ− kH(θ̂; θ, σ)− θ̂, it thus follows from the definition of k (Equation A.9) that θ̂
is decreasing in λ and η, and increasing in η̂.

�

A note on the variance of encoded outcomes in the steady-state. This note shows that the variance
of encoded outcomes in the steady-state exceeds the true variance in outcomes. As noted above, in
the steady state encoded outcomes are given by x̂t = xt + κt(xt − θ̂∞), where θ̂∞ is the solution
to Equation A.10. Hence, the steady-state variance of encoded outcomes is Var(x̂t) = Var(xt) +
Var(κt(xt − θ̂∞)) + 2Cov(xt, κt(xt − θ̂∞)). Note that Cov(xt, κt(xt − θ̂∞)) = E[xtκt(xt − θ̂∞)] −
θE[κt(xt − θ̂∞)], where

E[κt(xt − θ̂∞)] = [1− FZ(θ̂∞)]κGE[xt − θ̂∞|xt ≥ θ̂∞] + FZ(θ̂∞)κLE[xt − θ̂∞|xt < θ̂∞]

= κG(θ − θ̂∞) + FZ(θ̂∞)(κL − κG)E[xt − θ̂∞|xt < θ̂∞], (A.21)

and

E[xtκt(xt − θ̂∞)] = [1− FZ(θ̂∞)]κGE[xt(xt − θ̂∞)|xt ≥ θ̂∞] + FZ(θ̂∞)κLE[xt(xt − θ̂∞)|xt < θ̂∞]

= κGE[xt(xt − θ̂∞)] + FZ(θ̂∞)(κL − κG)E[xt(xt − θ̂∞)|xt < θ̂∞]

= κG(σ2 + θ2 − θθ̂∞) + FZ(θ̂∞)(κL − κG)E[xt(xt − θ̂∞)|xt < θ̂∞], (A.22)

and the last line follows from the fact that σ2 = Var(xt) and θ = E[xt]. Hence,

Cov(xt, κt(xt − θ̂∞)) = κGσ2 + FZ(θ̂∞)(κL − κG)E[xt(xt − θ̂∞)− θ(xt − θ̂∞)|xt < θ̂∞]

= κGσ2 + FZ(θ̂∞)(κL − κG)E[(xt − θ)(xt − θ̂∞)|xt < θ̂∞]. (A.23)

Since θ̂∞ < θ (Proposition 3, Part 2), xt < θ̂∞ implies xt < θ, meaning the expectation in Equation
A.23 is always positive. Thus, Var(x̂t) = Var(xt) + Var(κt(xt − θ̂∞)) + 2Cov(xt, κt(xt − θ̂∞)) >
Var(xt).
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Proof of Proposition 4.

Proof. The results of this proposition do not require our assumption of normally-distributed out-
comes. Thus, we prove the results for the more general environment considered in the proof of
Proposition 3. Specifically, suppose consumption utility in each period t is xt = θ + σzt, where each
zt is an i.i.d. realization of a mean-zero, unit-variance random variable Z that has support R and a
continuously differentiable distribution FZ (and a density denoted by fZ).

Part 1. We first provide an expression for v(θ̃, σ), which assumes the agent believes outcomes are
distributed according to parameters (θ̃, σ). Let F (·|θ̃) denote the CDF of x given these parameters
(that is, F (x|θ̃) = FZ(x−θ̃

σ
)), and let Eθ̃ denote expectations with respect to F (·|θ̃). Then v(θ̃, σ) =

Eθ̃[u(x|θ̃)] and thus:

v(θ̃, σ) = Eθ̃[x] + η[1− F (θ̃|θ̃)]
(
Eθ̃[x|x ≥ θ̃]− θ̃

)
+ ηλF (θ̃|θ̃)

(
Eθ̃[x|x < θ̃]− θ̃

)
= θ̃ − η(λ− 1)F (θ̃|θ̃)

(
θ̃ − Eθ̃[x|x < θ̃]

)
= θ̃ − η(λ− 1)H(θ̃; θ̃, σ), (A.24)

where H is defined as in Equation A.11. Furthermore,

H(θ̃; θ̃, σ) = θ̃FZ(0)−
∫ 0

−∞
[θ̃ + σu]fZ(u)du = σ|z̄−|, (A.25)

where z̄− ≡
∫ 0

−∞ ufZ(u)du < 0 is a value determined entirely by the distribution of Z and hence
independent of the parameters of interest. Thus

v(θ̃, σ) = θ̃ − η(λ− 1)σ|z̄−|, (A.26)

so v(θ, σ) − v(θ̂∞, σ) = θ − θ̂∞. From Proposition 3 (Part 2), if λ > 1, then θ − θ̂∞ > 0 and θ̂∞ is
strictly decreasing in σ. Thus v(θ, σ)− v(θ̂∞, σ) is positive and strictly increasing in σ.

Part 2. Let P(w) denote the set of parameter values (θ, σ) such that v(θ, σ) = w. Fixing (θ, σ) ∈
P(w), let θ̂∞(θ, σ) denote the steady-state perception of θ written explicitly as a function fo the true
parameters. Thus, v(θ, σ) = w is the per-period expected utility under full (correct) information,
and v(θ̂∞(θ, σ), σ) is that under the misattributor’s long-run beliefs. We show that, constrained to
(θ, σ) ∈ P(w), limσ→∞ v(θ̂∞(θ, σ), σ) = −∞.

First, we show that for any prospect with (θ, σ) ∈ P(w), the steady-state perceived mean θ̂∞(θ, σ)
of that prospect is a linearly decreasing function of σ. Recall that θ̂∞(θ, σ) solves θ̂−θ+kH(θ̂; θ, σ) =

0. Since H(θ̂; θ, σ) = θ̂FZ

(
θ̂−θ
σ

)
−
∫ θ̂
−∞ x

1
σ
fZ
(
x−θ
σ

)
dx, we can define ẑ ≡ (θ̂ − θ)/σ and rewrite

H(θ̂; θ, σ) as

H(θ̂; θ, σ) = θ̂FZ (ẑ)−
∫ ẑ

−∞
[θ + σz]fZ (z) dz = σ

(
ẑFZ (ẑ)−

∫ ẑ

−∞
zfZ (z) dz

)
. (A.27)
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Hence, the steady-state value θ̂∞(θ, σ) is characterized by the value ẑ that solves

ẑ + k

(
ẑFZ (ẑ)−

∫ ẑ

−∞
zfZ (z) dz

)
= 0. (A.28)

Since θ̂∞(θ, σ) is unique and finite for all finite values (θ, σ), there exists a unique, finite ẑ that
solves Equation A.28. Denote this value by z∗. Clearly z∗ depends solely on FZ , fZ , and k, and
is thus a constant independent of θ and σ. As such, since z∗ = (θ̂∞(θ, σ) − θ)/σ, it follows that
θ̂∞(θ, σ) = θ+z∗σ. Furthermore, the fact that θ̂∞(θ, σ) < θ implies that z∗ < 0. Thus θ̂ = θ−|z∗|σ.

Now consider a prospect with (θ, σ) ∈ P(w). From Equations A.24 and A.25, we have v(θ, σ) =

θ− η(λ− 1)σ|z̄−| and v(θ̂∞(θ, σ), σ) = θ̂∞(θ, σ)− η(λ− 1)σ|z̄−|, where z̄− ≡
∫ 0

−∞ ufZ(u)du < 0.
Substituting the linear specification of θ̂∞(θ, σ) into the expression for v(θ̂∞(θ, σ), σ) yields

v(θ̂∞(θ, σ), σ) = θ − |z∗|σ − η(λ− 1)σ|z̄−| = w − |z∗|σ. (A.29)

Thus v(θ̂∞(θ, σ), σ) diverges to −∞ as σ → ∞ along the locus of parameter values defining P(w).
Consider any arbitrary value ŵ < w and define σ̄(w, ŵ) ≡ (w − ŵ)/|z∗|. For any parameter combi-
nation (θ, σ) ∈ P(w) with σ > σ̄(w, ŵ), we have v(θ̂∞(θ, σ), σ) < w − |z∗|σ̄(w, ŵ) = ŵ.

�

Proof of Proposition 5.

Proof. We begin by deriving the wage and effort strategies of the principal and worker, respectively,
for the case where the principal suffers misattribution and the worker is aware of this error. Since
we assume the principal is ignorant of her bias and presumes common knowledge of rationality, she
believes the worker follows the Bayesian Nash Equilibrium (BNE) strategy that he would play when
facing a rational principal. Accordingly, let êt and θ̂t−1 denote the principal’s expectation of the
worker’s effort and ability at the start of each round t. The principal best responds to these beliefs
by offering a wage in round t equal to her expectation of output that round; that is, wt = θ̂t−1 + êt.
Additionally, recall that the worker knows (1) that the principal follows a misspecified updating rule
due to misattribution, and (2) that the principal wrongly presumes that the worker follows the standard
BNE strategy. The worker thus best responds to these erroneous beliefs held by the principal.

We now analyze Holmström’s (1999) model with these particular augmentations. Unlike elsewhere
in this paper, we allow for temporal discounting in order to match Holmström (1999) as closely as
possible. Hence, the worker’s effort in each round maximizes the sum of his discounted expected
utility given discount factor δ ∈ (0, 1]. In period t, he faces an objective function

Ut ≡
T∑
τ=t

δτ−1[wτ − c(eτ )] =
T∑
τ=t

δτ−1[θ̂τ−1 + êτ − c(eτ )]. (A.30)

To derive the optimal effort profile, we can isolate the part of Ut that depends on et. Since the
principal’s beliefs follow the dynamics outlined in Section 3, Lemma 1 implies θ̂τ = ατ

∑τ
k=1 ξ

τ
k(xk−
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êk), where ξττ = (1+κG) and ξτk = (1+κG)
∏τ−1

j=k

[
1− κGαj

]
for all k < t, which yields the objective

−c(et) +
T∑

τ=t+1

δτ−tατ−1ξ
τ−1
t et = −c(et) + et(1 + κG)

{
δαt +

T∑
τ=t+2

δτ−tατ−1

(
τ−2∏
j=t

[1− κGαj]

)}
.

Letting ce(·) denote the first derivative of c(·), the optimal effort in period t is thus e∗t ≡ c−1
e (Mt),

where

Mt ≡ (1 + κG)

{
δαt +

T∑
τ=t+2

δτ−tατ−1

(
τ−2∏
j=t

[1− κGαj]

)}
. (A.31)

Given this derivation of the optimal effort path, we can now compare e∗t to the effort provided when
the principal is fully rational (and this is common knowledge). In the rational case, the worker’s
optimal effort in period t is ert ≡ c−1

e (M r
t ), where M r

t ≡
∑T

τ=t+1 δ
τ−tατ−1. Because c(·) is strictly

convex, it follows that e∗t < ert ⇔Mt < M r
t . Notice that we can write Mt in terms of M r

t as follows:

Mt = M r
t + κGδαt −

T∑
τ=t+2

δτ−tατ−1

(
1− (1 + κG)

τ−2∏
j=t

[1− κGαj]

)
. (A.32)

It’s clear that Mt > M r
t for t = T −1. Furthermore, since

∏τ−2
j=t [1−κGαj] decreases to 0 as τ −2− t

grows large, a sufficiently large T implies there exists a period t∗ < T such that Mt < M r
t for t < t∗.

If T is not sufficiently large, then t∗ = 1. More formally, let Dt ≡Mt −M r
t . Equation A.32 implies

Dt = κGδαt − δ2αt+1[1− (1 + κG)(1− κGαt)]

−
T∑

τ=t+3

δτ−tατ−1

(
1− (1 + κG)[1− κGαt]

τ−2∏
j=t+1

[1− κGαj]

)
(A.33)

Hence Dt = δ(Dt+1 + κGαt[1 − Mt+1]). Thus, Dt > 0 implies Dt+1 > 0 so long as Dt+1 >
−κGαt[1−Mt+1] = −κGαt[1−Dt+1 −M r

t ], which is equivalent to [1− κGαt]Dt+1 > −κGαt[1−
M r

t+1]. By convexity of beliefs, [1 − κGαt] > 0, so the preceding inequality holds so long as M r
t is

sufficiently small. Since M r
t decreases in t to a value strictly less than one, there exists a t̃ such that

M r
t < 1 for t ≥ t̃. Thus, Dt+1 remains positive for t sufficiently large.

�

Proof of Corollary 2.

Proof. First, the existence of T̄ follows from the proof of Proposition 5, where we establish that
there exists a value t∗ such that Mt < M r

t whenever t < t∗ and that t∗ > 1 when T is sufficiently
large. To verify the second claim, suppose T > T̄ and let M1(T ) and M r

1 (T ) denote the biased and
rational marginal benefit of effort in period 1 as a function of the horizon, T . From Equation A.32,
M r

1 (T + 1)−M1(T + 1) > M r
1 (T )−M1(T ) if and only if

δTαT−1

[
1− (1− κG)

T−1∏
j=1

[1− κGαj]

]
> 0, (A.34)
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which holds iff (1 − κG)
∏T−1

j=1 [1 − κGαj] < 1. If this condition fails, then M1(T ) > M r
1 (T ),

contradicting T > T̄ . �

Proof of Proposition 6.

Proof. Part 1. Note that x̂t = xt + κt

(
xt − Êt−1[xt]

)
= xt + κt(xt − ϕx̂t−1). Thus, writing x̂t

recursively in terms of (x1, . . . , xt) yields

x̂t = (1 + κt)xt − ϕκtx̂t−1

= (1 + κt)xt − ϕκt((1 + κt−1)xt−1 − ϕκt−1x̂t−2)

= (1 + κt)xt − ϕκt(1 + κt−1)xt−1 + ϕ2κtκt−1x̂t−2

= (1 + κt)xt − ϕκt(1 + κt−1)xt−1 + ϕ2κtκt−1(1 + κt−1)xt−2 − ϕ3κtκt−1κt−2x̂t−3

. . .

= (1 + κt)xt +
t−1∑
j=1

(
(−ϕ)t−j

t∏
i=j+1

κi

)
(1 + κj)xj. (A.35)

Hence, conditional on (x1, . . . , xt−1), Var
(
Êt[xt+1]

)
= ϕ2Var((1+κt)xt) > ϕ2Var(xt) = Var (Et[xt+1]),

where Et[xt+1] denotes the rational expectation.

Part 2. Let dt = x̂t − Êt−1[xt] = x̂t − ϕx̂t−1. Thus

dt = (1 + κt)xt − ϕκtx̂t−1 − ϕx̂t−1

= (1 + κt)(xt − ϕx̂t−1)

= (1 + κt)(ϕxt−1 + εt − ϕ((1 + κt−1)xt−1 − ϕκt−1x̂t−2))

= (1 + κt)(εt − ϕκt−1(xt−1 − ϕx̂t−2))

= (1 + κt)

(
εt − ϕ

κt−1

1 + κt−1

dt−1

)
. (A.36)

�

Proof of Proposition 7

Proof. As noted in Footnote 41, the updating rule for beliefs about each θω is similar to the baseline
model: letting Nω

t ≡
∑t

k=1 1{ωk = ω}, the agent’s estimate of θω after t rounds is

θ̂ωt ≡
ρ2

Nω
t ρ

2 + σ2

 ∑
{k≤t : ωk=ω}

x̂k

+
σ2

Na
t ρ

2 + σ2
θω0 .

Following our assumption in the text, we focus on the case where σ → 0. This implies that the
optimal action in any given period is also myopically optimal: it is not influenced by a “forward-
looking” desire to reduce uncertainty for future rounds by strategically attempting to generate more
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data about a particular state.47 Denote the agent’s (subjectively) optimal action in round t by p∗t .
Fixing the agent’s vector of beliefs entering round t, denoted by θ̂t−1 ≡ (θ̂Ht−1, θ̂

L
t−1), she chooses p to

maximize
pθ̂Ht−1 + (1− p)θ̂Lt−1 − p(1− p)η(λ− 1)

[
θ̂Ht−1 − θ̂Lt−1]− c(p− p0). (A.37)

Hence, p∗t solves [
θ̂Ht−1 − θ̂Lt−1

](
2ηλp∗t + 1− ηλ

)
= c′(p∗t − p0). (A.38)

Our assumptions on the cost function are relevant here: (1) p0 = 1/2 implies that the LHS of Equation
A.38 is positive, and hence c′(0) = 0 implies that p∗t ∈ (p0, p̄]; and (2) since the LHS of Equation
A.38 is linearly increasing in pt, c′(·) increasing and weakly convex generically implies that p∗t is
unique. Furthermore, from Equation A.38, it is clear that p∗t is independent of t conditional on θ̂t−1,
so we can simply write the optimal choice in t as p∗(θ̂t−1).

Convergence of beliefs follows from arguments similar to those used in the proof of Proposi-
tion 3 (Part 1), and we make extensive use the apparatus established there. However, there are
two differences to account for. First, the agent is updating about two parameters, θH and θL. Be-
liefs about each θω have dynamics that meet the required form, θ̂ωt = θ̂ωt−1 + α̂ωt (x̂t − θ̂ωt−1), where
α̂ωt ≡ 1{ωt = ω}αNω

t
, Nω

t counts the number of rounds in which ω has occurred through period t,
and αNω

t
= ρ2/(Nω

t ρ
2 + σ2). The weights (α̂ωt ) correspond to the rational weights (ατ ) considered

in the proof of Proposition 3, expect they only put weight on new observations in rounds in which
state ω occurs. (Put differently, we are essentially considering for each ω ∈ {H,L} the dynamics of
the sequence 〈θ̃ωτ 〉∞τ=1 defined by θ̃ωτ ≡ θ̂ωjω(τ) where jω(τ) denotes the time period in which the τ th

occurrence of ω happens.) Second, encoded outcomes conditional on ω, denoted by x̂ω, depend on
beliefs about both parameters since the agent’s expected outcome in round t—and hence her refer-
ence point—is ptθ̂Ht−1 + (1− pt)θ̂Lt−1, where pt = p∗(θ̂t−1). In light of these differences with respect
to Proposition 3, we show that each dimension of this two-dimensional system of beliefs meets the
sufficient conditions for convergence established in Proposition 3 (Part 1), and the limiting values are
consequently determined by the solution of a two-dimensional system of equations analogous to the
one-dimensional steady-state solution described in the proof of Proposition 3 (Part 1).

We now reverify conditions A1-A4 from Proposition 3 (Part 1) for both dimensions, ω ∈ {H,L}.
Conditions A1 and A2 follow immediately from the proof of Proposition 3 since for each ω, the
weights (α̂ωt ) are defined so that along the subsequence (τ) counting rounds in which ω occurs, α̂ωt
matches the rational weight ατ considered in Proposition 3. More precisely, since pt ∈ [1/2, p̄] where
p̄ < 1 and thus ωt = ω infinitely often, we have

∑∞
t=1 α̂

ω
t =

∑∞
t=1 1{ωt = ω}αNω

t
=
∑∞

τ=1 ατ =∞,
limt→∞ α̂

ω
t = limτ→∞ ατ = 0, and

∑∞
t=1(α̂ωt )2 =

∑∞
τ=1(ατ )

2 <∞.
Now consider condition A3. Following any action pt ∈ [0, 1], note that x̂Ht = xHt + κt(x

H
t −

θ̄t−1(pt)) where θ̄t−1(pt) = ptθ̂
H
t−1+(1−pt)θ̂Lt−1, meaning x̂Ht − θ̂Ht−1 = xHt +κt(x

H
t − θ̄t−1(pt))− θ̂Ht−1,

and thus

x̂Ht − θ̂Ht−1 = (1 + κt)x
H
t − (1 + ptκt)θ̂

H
t−1 − (1− pt)κtθ̂Lt−1

= (1 + κt)(x
H
t − θHt−1) + (1− pt)κt(θHt−1 − θLt−1)

+ (1 + ptκt)(θ
H
t−1 − θ̂Ht−1) + (1− pt)κt(θLt−1 − θ̂Lt−1), (A.39)

47We could alternatively relax the assumption that σ → 0 and instead assume the agent is myopic.
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where θHt−1 and θLt−1 are the rational beliefs entering round t. Following our verification of A3 for
Proposition 3, if is clear that supt E[|x̂Ht − θ̂Ht−1|2|θH , θL] < ∞ after an application of Minkowski’s
Inequality and then noting that the expected squared absolute value of each term in the final expres-
sion of Equation A.39 is finite. In particular, E[|xHt − θHt−1|2|θH , θL] and E[|θHt−1 − θLt−1|2|θH , θL]
are both finite because they concern only the rational Bayesian estimates, and Proposition 3 (Part
1) establishes that E[|θωt−1 − θ̂ωt−1|2|θH , θL] are finite as well. An analogous argument establishes
supt E[|x̂Lt − θ̂Lt |2|θH , θL] <∞.

Turning to condition A4, since we are considering a two-dimensional process, we must specify a
function ḡω : R2 → R for both ω ∈ {H,L}. As in Proposition 3, we take ḡω to be the expected
deviation function ∆ω : R2 → R analogous to Equation 8. More precisely, along dimension ω ∈
{H,L}, let ∆ω be the expectation of x̂ωt − θ̂ωt−1 conditional on θ̂t−1 and ωt = ω:

∆ω(θ̂t−1) ≡ E
[
x̂ωt (p∗(θ̂t−1), θ̂t−1)

∣∣∣∣θH , θL]− θ̂ωt−1, (A.40)

where x̂ωt (p∗(θ̂t−1), θ̂t−1) denotes the encoded outcome conditional on ωt = ω given mean beliefs
θ̂t−1 entering round t and action p∗(θ̂t−1). Thus

∆ω(θ̂t−1) = θω + κG(1− F (θ̄t−1(p∗(θ̂t−1))|θω))

(
E
[
xωt |xωt ≥ θ̄t−1(p∗(θ̂t−1))

]
− θ̄t−1(p∗(θ̂t−1))

)
+κLF (θ̄t−1(p∗(θ̂t−1))|θω)

(
E
[
xωt |xωt < θ̄t−1(p∗(θ̂t−1))

]
−θ̄t−1(p∗(θ̂t−1))

)
−θ̂ωt−1

= θω+κG
(
θω−θ̄t−1(p∗(θ̂t−1))

)
+ (κL − κG)F (θ̄t−1(p∗(θ̂t−1))|θω)

(
E
[
xωt |xωt < θ̄t−1(p∗(θ̂t−1))

]
− θ̄t−1(p∗(θ̂t−1))

)
− θ̂ωt−1, (A.41)

where F (·|θω) denotes the CDF of xω. It is clear from Equation A.38 that p∗(θ̂t−1) is continuous in
θ̂ωt−1, and θ̄t−1(p∗) is continuous in p∗. Hence, ∆ω(θ̂t−1) is continuous in θ̂ωt−1 for each ω ∈ {H,L},
as required. Thus A4 holds as in Proposition 3.

The limiting beliefs θ̂∞ = (θ̂H∞, θ̂
L
∞) hence satisfy[

∆H
(
θ̂H∞, θ̂

L
∞
)

∆L
(
θ̂H∞, θ̂

L
∞
)] =

[
0
0

]
.

Furthermore, given our assumption of σ → 0, ∆H and ∆L defined by Equation A.41 reduce in this
case to

∆H(θ̂H∞, θ̂
L
∞) = θH + κG(θH − θ̄(p∗(θ̂∞)))− θ̂H∞ (A.42)

∆L(θ̂H∞, θ̂
L
∞) = θL + κL(θL − θ̄(p∗(θ̂∞)))− θ̂L∞. (A.43)

Fixing p∗, the solution to this system is given by Equation 15 in the main text. At this solution,
θ̂H∞ − θ̂L∞ > θH − θL regardless of p∗. Thus, Equation A.38 implies that the long-run action under
misattribution exceeds the full-information optimal action whenever the full-information action is
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interior. Otherwise, the misattributor settles on the highest possible action, which coincides with the
full-information action (p∗ = p̄).

�

B Misattribution with Multiple Dimensions
In this section, we extend our model of misattribution to settings where consumption utility is multi-
dimensional. This extension requires an additional assumption on how surprises along one dimension
influence encoded outcomes on other dimensions. While there are a range of plausible assumptions,
we assume that the encoded outcome on one dimension depends entirely on sensations of elation or
disappointment felt on that dimension. We propose this specific assumption to eliminate a potential
degree of freedom and to provide a starting place for potential empirical exploration.

Following KR’s multidimensional model, suppose consumption vector c ∈ RK generates con-
sumption utility x ∈ RK that is additively separable across K dimensions. Let x = (x1, . . . , xK)

with xk ∈ R denoting consumption utility on dimension k, and let F̂ denote the agent’s subjective
CDF over x. Define the vector θ̂ = (θ̂1, . . . , θ̂K) such that element θ̂k denotes the expected con-
sumption utility on dimension k according to F̂ . The person’s total utility from x given reference
distribution F̂ is then u(x|θ̂) =

∑K
k=1 uk(x

k|θ̂k), where uk(xk|θ̂k) ≡ xk + ηn(xk|θ̂k) is the total util-
ity along dimension k and n(xk|θ̂k) is the unidimensional gain-loss utility assumed in our baseline
model (Equation 1).

Our notion of misattribution generally extends to this setting: following outcome x and total utility
level u = u(x|θ̂), a misattributor encodes a distorted value x̂ that would have generated the same total
utility level u if she instead had a utility function û(·|θ̂) that weights each gain-loss term, n(·|θ̂k), by
η̂ ∈ [0, η). That is, the person encodes x̂ that solves û(x̂|θ̂) = u(x|θ̂). To further pin down the
misencoded outcome on each dimension, we assume that each x̂k depends solely on gains and losses
experienced on dimension k: x̂k is defined by ûk(x̂k|θ̂k) = x̂k + η̂n(x̂k|θ̂k) = xk + ηn(xk|θ̂k) =
uk(x

k|θ̂k). While we suspect that the more general psychology of “attribution bias” may lead to
across-dimension misencoding (e.g., Haggag and Pope 2018), we believe this formulation provides a
tractable stepping stone for empiricists.

C Misattribution with Stochastic Reference Points
In this section, we consider an alternative definition of the reference point. In particular, we consider
the stochastic reference point formalized by Kőszegi and Rabin (2006). We first describe how to
extend our framework to accommodate stochastic reference points, and then we present some results
on an agent’s long-run steady-state beliefs under misattribution for this case. These steady-state be-
liefs share similar features with those characterized in Proposition 3 from the main text: a loss-averse
misattributor underestimates the mean of the prospect and overestimates its variance. Furthermore,
she underestimates the mean in proportion to the true variance in outcomes, which again implies a
greater bias against riskier prospects.

Suppose the agent believes that outcomes are distributed according to F̂ . In KR’s model, the sense
of gain or loss derives from comparing outcome xwith each counterfactual outcome that was possible
under F̂ . Thus, gain-loss utility is no longer given by Equation 1 and instead depends on the entire
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distribution of outcomes:

n(x|F̂ ) =

∫
x̃<x

(x− x̃)dF̂ (x̃) + λ

∫
x̃≥x

(x− x̃)dF̂ (x̃). (C.1)

Hence, outcome x is compared against each hypothetical outcome and this comparison is weighted
by the probability of that hypothetical outcome.48 Given this alternative reference point, an encoded
outcome x̂ is defined exactly as in the main text (Equation 3) except the gain-loss utility term is
replaced by n(·|F̂ ) defined in Equation C.1.49

Many of our baseline steady-state results presented in Section 4 extend when the reference point
is stochastic (Equation C.1), albeit with a loss of tractability. To see why stochastic reference points
complicate the analysis, note that in our baseline model in the main text, the agent’s perceived distri-
bution of outcomes in the steady state is specified entirely by her perceived mean outcome. This is
because her reference point depends solely on that single moment of the outcome distribution. With
stochastic reference points, however, gain-loss utility depends on the entire perceived distribution.
As such, solving for the steady-state perceived distribution with stochastic reference points in general
would entail finding a fixed point in the space of distributions—the steady-state distribution is such
that, if believed, the person’s encoded outcomes follow that distribution.

We leave a full treatment of this case to future work and focus here on the case where (i) outcomes
are normally distributed such that xt ∼ N(θ, σ2) and (ii) the agent fits θ and σ to the long-run
distribution of encoded outcomes. That is, we analyze stead-state perceptions, denoted by θ̂ and σ̂,
such that if the agent believes the mean and variance of outcomes are θ̂ and σ̂2, respectively, then
the distribution of encoded outcomes indeed has a mean and variance equal to θ̂ and σ̂2, respectively.
Steady-state perceptions θ̂ and σ̂ are thus characterized by the solution to the following system of
equations:

θ̂ = E[x̂|θ̂, σ̂] (C.2)
σ̂2 = Var(x̂|θ̂, σ̂), (C.3)

where E[·|θ̂, σ̂] and Var(·|θ̂, σ̂) are with respect to the true parameter values governing the distribution
of x, (θ, σ), and are conditional on the person believing these parameters have values equal to θ̂ and
σ̂, respectively. Unlike our long-run analysis in the main text, the analysis here allows the agent
to adjust her perception of the variance according to the encoded data. With stochastic reference
points, the mean encoded outcome depends directly on the agent’s perception of the variance. This
interdependence does not arise with the form of reference point considered in the main text and was
thus irrelevant there.

The remainder of this section analyzes the steady-state perceptions implied by Equations C.2 and
C.3. In particular, we highlight that a misattributor overestimates σ (i.e., σ̂ > σ) and underestimates
θ in proportion to σ̂.50

48If either λ = 1 or the reference distribution F̂ is degenerate, then this stochastic reference-point model reduces to
our baseline model (Equation 1).

49Since n(x|F̂ ) in Equation C.1 is strictly increasing in x conditional on F̂ , the encoded outcome x̂ is still well defined
and unique.

50The latter result is similar to the comparative statics highlighted in the main text in Proposition 3. While many of our
punchlines from Section 4 extend with stochastic reference points, our result that a misattributor’s average experienced
utility exceeds the average utility she would experience under correct beliefs (see Footnote 28) does not necessarily
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As a first step, the following lemma specifies the gain-loss utility function (Equation C.1) for
the case of normally-distributed outcomes. Given that the agent presumes outcomes are normally
distributed, the perceived distribution F̂ referenced in the definition of gain-loss utility in Equation
C.1 is entirely determined by the agent’s perception of the mean and variance. As such, we simplify
notation by writing n directly in terms of these perceptions: let n(x|θ̂, σ̂) ≡

∫
x̃<x

(x− x̃)f(x̃|θ̂, σ̂)dx̃+

λ
∫
x̃≥x(x− x̃)f(x̃|θ̂, σ̂)dx̃, where f(·|θ̂, σ̂) is the PDF of a normally-distributed random variable with

mean and standard deviation equal to θ̂ and σ̂, respectively. Additionally, let Φ(·) and φ(·) denote the
standard-normal CDF and PDF, respectively.

Lemma C.1. Suppose that the person believes x ∼ N(θ̂, σ̂2). With a stochastic reference point,

n(x|θ̂, σ̂) = σ̂λz − σ̂(λ− 1) [zΦ(z) + φ(z)] ,

where z = (x− θ̂)/σ̂.

Proof. From Equation C.1,

n(x|θ̂, σ̂) =

∫ x

−∞
(x− x̃)f(x̃|θ̂, σ̂)dx̃+ λ

∫ ∞
x

(x− x̃)f(x̃|θ̂, σ̂)dx̃ (C.4)

=

∫ x

−∞

(
x− x̃
σ̂

)
φ

(
x̃− θ̂
σ̂

)
dx̃+ λ

∫ ∞
x

(
x− x̃
σ̂

)
φ

(
x̃− θ̂
σ̂

)
dx̃ (C.5)

= σ̂

(∫ z

−∞
(z − z̃)φ (z̃) dz̃ + λ

∫ ∞
z

(z − z̃)φ (z̃) dz̃

)
, (C.6)

where z = x−θ̂
σ̂

and z̃ = x̃−θ̂
σ̂

. Thus

n(x|θ̂, σ̂) = σ̂

(∫ ∞
−∞

(z − z̃)φ (z̃) dz̃ + (λ− 1)

∫ ∞
z

(z − z̃)φ (z̃) dz̃

)
(C.7)

= σ̂

(
z + (λ− 1)z[1− Φ(z)]− (λ− 1)

∫ ∞
z

z̃φ (z̃) dz̃

)
. (C.8)

Note that
∫∞
z
z̃φ (z̃) dz̃ = [1 − Φ(z)]E[Z̃|Z̃ > z] where Z̃ is a standard normal random variable.

Hence n(x|θ̂, σ̂) = σ̂ (z + (λ− 1) (z[1− Φ(z)]− φ(z))) = σ̂ (λz − (λ− 1)(zΦ(z) + φ(z))).
�

We now derive the first-moment condition, Equation C.2. To simplify matters, we focus on the case
where η̂ = 0. Hence, x̂ = x+ ηn(x|θ̂, σ̂), where n(·|θ̂, σ̂) is given in Lemma C.1. Let z ≡ (x− θ̂)/σ̂
and z̄ ≡ (θ − θ̂)/σ̂. Conditional on the agent believing in parameter values θ̂ and σ̂, the expectation
of x̂ with respect to the true distribution, which has density 1

σ
φ
(
x−θ
σ

)
, is

E[x+ηn(x|θ̂, σ̂)|θ̂, σ̂] = θ+σ̂η

(
λz̄−(λ−1)

[ ∫
zΦ(z)

1

σ
φ((x−θ)/σ)dx+

∫
φ(z)

1

σ
φ((x−θ)/σ)dx

])
.

extend. With stochastic reference points, the agent’s realized utility depends explicitly on her perceived variance. Fixing
the true variance in outcomes, an agent facing normally-distributed outcomes experiences a lower utility on average when
she anticipates greater variance.
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Let w = x−θ
σ

, which implies z = a+ bw where a = z̄ = θ−θ̂
σ̂

and b = σ
σ̂

. Hence,

E[x+ηn(x|θ̂, σ̂)|θ̂, σ̂] = θ+σ̂η

(
λa−(λ−1)

[ ∫
(a+ bw) Φ(a+bw)φ(w)dw+

∫
φ(a+bw)φ(w)dw

])
.

Thus,

E[x+ ηn(x|θ̂, σ̂)|θ̂, σ̂] = θ + σ̂η

(
λa− (λ− 1)

[
aI1 + bI2 + I3

])
, (C.9)

where

I1 ≡
∫

Φ(a+ bw)φ(w)dw = Φ

(
a√

1 + b2

)
, (C.10)

I2 ≡
∫
wΦ(a+ bw)φ(w)dw =

b√
1 + b2

φ

(
a√

1 + b2

)
, (C.11)

I3 ≡
∫
φ(a+ bw)φ(w)dw =

1√
1 + b2

φ

(
a√

1 + b2

)
. (C.12)

Hence, the first equation of the steady-state system, Equation C.2, amounts to

0 = a+ η

{
λa− (λ− 1)

[
aΦ

(
a√

1 + b2

)
+
√

1 + b2φ

(
a√

1 + b2

)]}
. (C.13)

We now turn to the second-moment equation of the steady-state system, Equation C.3. Note
that Var(x̂|θ̂, σ̂) = E[x̂2|θ̂, σ̂] − E[x̂|θ̂, σ̂]2, where E[x̂2|θ̂, σ̂] = σ2 + θ2 + 2ηE[xn(x|θ̂, σ̂)|θ̂, σ̂] +
η2E[n(x|θ̂, σ̂)2|θ̂, σ̂]. Since E[x̂|θ̂, σ̂] is already derived above, we next derive E[n(x|θ̂, σ̂)2|θ̂, σ̂] and
E[xn(x|θ̂, σ̂)|θ̂, σ̂] in turn. From Lemma C.1,

n(x|θ̂, σ̂)2 = σ̂2
{
λ2z2 − [2λ(λ− 1)]

(
z2Φ(z) + zφ(z)

)
+ (λ− 1)2(z2Φ(z)2 + 2zΦ(z)φ(z) + φ(z)2)

}
. (C.14)

We must take the expectation of each these terms with respect to the true distribution. To do so,
we first rewrite E[n(x|θ̂, σ̂)2|θ̂, σ̂] in terms of several Gaussian integrals, and then evaluate those
integrals.

E[n(x|θ̂, σ̂)2|θ̂, σ̂] = σ̂2
{
λ2(a2 + b2I4)− [2λ(λ− 1)]

(
a2I1 + 2abI2 + b2I5 + aI3 + bI6

)
+ (λ− 1)2(a2I10 + 2abI11 + b2I12 + 2(aI8 + bI9) + I7)

}
(C.15)

where
I1 =

∫
Φ(a+ bw)φ(w)dw I2 =

∫
wΦ(a+ bw)φ(w)dw

I3 =
∫
φ(a+ bw)φ(w)dw I4 =

∫
w2φ(w)dw

I5 =
∫
wφ(a+ bw)φ(w)dw I6 =

∫
w2Φ(a+ bw)φ(w)dw

I7 =
∫
φ(a+ bw)2φ(w)dw I8 =

∫
Φ(a+ bw)φ(a+ bw)φ(w)dw

I9 =
∫
wΦ(a+ bw)φ(a+ bw)φ(w)dw I10 =

∫
Φ(a+ bw)2φ(w)dw

I11 =
∫
wΦ(a+ bw)2φ(w)dw I12 =

∫
w2Φ(a+ bw)2φ(w)dw.

We now evaluate each of these integral terms. Note that I1, I2, and I3 are derived above, and
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I4 = E[w2] = σ2 + E[w]2 = 1 since w is standard normal. We now turn to the remaining terms.
I5: Letting f(·|m, s) denote a generic normal PDF with mean m and standard deviation s, the fol-
lowing identity will be useful:

f(w|m1, s1)f(w|m2, s2) = Sf(w|m̄, s̄) (C.16)

where

m̄ =
m1s2 +m2s1

s2
1 + s2

2

and s̄ =

√
s2

1s
2
2

s2
1 + s2

2

,

and S ≡ f
(
m1

∣∣m2,
√
s2

1 + s2
2

)
is a scaling factor. Using this identity with m̄ = −a/b

(
1
b2

+ 1
)
,

I5 =
1

b

1√
1 + 1

b2

φ

 −a/b√
1 + 1

b2

∫ wf(w|m̄, s̄)dw =
1√

1 + b2
φ

(
a√

1 + b2

)
−ab

1 + b2
, (C.17)

which follows from the fact that φ is symmetric: φ(−y) = φ(y).
I6: Using integration by parts,

I6 =

∫
w2Φ(a+ bw)φ(w)dw =

∫
wΦ(a+ bw) [wφ(w)] dw

= −wΦ(a+ bw)φ(w)

∣∣∣∣∞
−∞

+

∫
φ(w) [bwφ(a+ bw) + Φ(a+ bw)] dw

= b

∫
wφ(a+ bw)φ(w)dw +

∫
Φ(a+ bw)φ(w)dw (C.18)

= bI5 + I1. (C.19)

I7: Using our identity for the product of two normal densities above (Equation C.16), φ(z)2 =
Sf(z|m̄, s̄), where m̄ = 0, s̄ = 1/

√
2 and S = φ(0)/

√
2. Hence, I7 = φ(0)

∫
φ(ã + b̃z))φ(w)dw,

where ã =
√

2a and b̃ =
√

2b. Thus, using the derivation of I3:

I7 =
φ(0)√
1 + b̃2

φ

(
ã√

1 + b̃2

)
=

φ(0)√
1 + 2b2

φ

( √
2a√

1 + 2b2

)
. (C.20)

aI8 + bI9: Note that aI8 + bI9 =
∫

(a + bw)Φ(a + bw)φ(a + bw)φ(w)dw, which can be simplified
using our formula for the product of two normal density functions: φ(a + bw)φ(w) = Sf(w|m̄, s̄2)
where f(·|m̄, s̄2) is the PDF of a normal random variable with mean m̄ = −ab/(1 + b2), standard
deviation s̄ = 1/(

√
1 + b2), and scaling factor S = 1√

1+b2
φ
(

a√
1+b2

)
. Thus

aI8 + bI9 = S

(
(a+ bm̄)

∫
Φ(a+ bw)f(w|m̄, s̄2)dw + bs̄

∫
yΦ(a+ bw)f(w|m̄, s̄2)dw

)
,

where y = w−m̄
s̄

. Finally, using the derivation of I1 (Equation C.10),
∫

Φ(a + bw)f(w|m̄, s̄2)dw =∫
Φ(a′ + b′y)φ(y)dy = Φ

(
a′√

1+b′2

)
, where a′ = a + bm̄ = a/(1 + b2) and b′ = bs̄ = b/

√
1 + b2.
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Likewise, using the derivation of I2 (Equation C.11),
∫
yΦ(a′ + b′y)φ(y)dy = b′√

1+b′2
φ
(

a′√
1+b′2

)
.

Combining all the terms above yields

aI8 + bI9 =
1√

1 + b2
φ

(
a√

1 + b2

)[
a

1 + b2
Φ

(
a√

1 + b2
√

1 + 2b2

)
+

b2

√
1 + b2

√
1 + 2b2

φ

(
a√

1 + b2
√

1 + 2b2

)]
. (C.21)

I10: Note that

I10 =

∫
Φ(a+ bw)2φ(w)dw = Φ

(
a√

1 + b2

)
− 2T

(
a√

1 + b2
,

1√
1 + 2b2

)
,

where T (h, q) = φ(h)
∫ q

0
φ(hx)
1+x2

dx is Owen’s T function.
I11: Note that

I11 =

∫
wΦ(a+ bw)2φ(w)dw =

2b√
1 + b2

φ

(
a√

1 + b2

)
Φ

(
a√

1 + b2
√

1 + 2b2

)
.

I12: Integration by parts yields

I12 =

∫ [
Φ(a+ bw)2 + 2bwΦ(a+ bw)φ(a+ bw)

]
φ(w)dw

= I10 + 2b

∫
wΦ(a+ bw)φ(a+ bw)φ(w)dw. (C.22)

The integral
∫
wΦ(a+ bw)φ(a+ bw)φ(w)dw was calculated in the derivation of aI8 + bI9 above. It

follows that

I12 = I10 +
2b2

√
1 + b2

φ

(
a√

1 + b2

)[
−a

1 + b2
Φ

(
a√

1 + b2
√

1 + 2b2

)
+

1√
1 + b2

√
1 + 2b2

φ

(
a√

1 + b2
√

1 + 2b2

)]
. (C.23)

Finally, using I1 through I12 derived above, we can write E[n(x|θ̂, σ̂)2|θ̂, σ̂] (Equation C.15) as
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σ̂2N2(a, b), where

N2(a, b) = λ2(a2 + b2)

− [2λ(1− λ)]

[
(a2 + b2)Φ

(
a√

1 + b2

)
+ a
√

1 + b2φ

(
a√

1 + b2

)]
+ (λ− 1)2

{
(a2 + b2)Φ

(
a√

1 + b2

)
− 2(a2 + b2)T

(
a√

1 + b2
,

1√
1 + 2b2

)
+ 2(1 + b2)S

[
aΦ

(
a√

1 + b2
√

1 + 2b2

)
+

b2

√
1 + b2

√
1 + 2b2

φ

(
a√

1 + b2
√

1 + 2b2

)]
+

φ(0)√
1 + 2b2

φ

( √
2a√

1 + 2b2

)}
, (C.24)

and S = 1√
1+b2

φ
(

a√
1+b2

)
.

We now derive E[xn(x|θ̂, σ̂)|θ̂, σ̂]. Using Lemma C.1 and the change of variables introduced above,

xn(x|θ̂, σ̂) = σ̂λ(θa+ [θb+ σa]w + σbw2)

− σ̂(λ− 1)(θa+ [θb+ σa]w + σbw2)Φ(a+ bw)− σ̂(λ− 1)(θ − σw)φ(a+ bw). (C.25)

Taking expectations with respect to w and using the integral identities above yields

E[xn(x|θ̂, σ̂)|θ̂, σ̂] = σ̂
{
λ[θa+ σb]− (λ− 1)

(
θ[aI1 + bI2 + I3] + σbI1

)}
. (C.26)

We can now use the expressions derived above to assess Var(x̂|θ̂, σ̂). Recall from above that Var(x̂|θ̂, σ̂) =
E[x̂2|θ̂, σ̂] − E[x̂|θ̂, σ̂]2, where E[x̂2|θ̂, σ̂] = σ2 + θ2 + 2ηE[xn(x|θ̂, σ̂)|θ̂, σ̂] + η2E[n(x|θ̂, σ̂)2|θ̂, σ̂].
From Equation C.9, we have E[x̂|θ̂, σ̂] = θ+σ̂ηN1(a, b) whereN1(a, b) ≡ λa−(λ−1)[aI1+bI2+I3].
Using this expression along with Equation C.24 yields

Var(x̂|θ̂, σ̂) = σ2 + θ2 + 2ηE[xn(x|θ̂, σ̂)|θ̂, σ̂] + η2σ̂2N2(a, b)− (θ + σ̂ηN1(a, b))2, (C.27)

Further substituting Equation C.26 into C.27 yields

Var(x̂|θ̂, σ̂) = σ2 + 2ησ̂(E[xn(x|θ̂, σ̂)|θ̂, σ̂]−N1(a, b)) + η2σ̂2[N2(a, b)−N1(a, b)]

= σ2 + 2ησ2(λ− (λ− 1)I1) + η2σ̂2[N2(a, b)−N1(a, b)]

= σ2 + 2ησ2N0(a, b) + η2σ̂2[N2(a, b)−N1(a, b)], (C.28)

where N0(a, b) ≡ λ − (λ − 1)I1. Thus, the steady-state condition from Equation C.3, σ̂2 =
Var(x̂|θ̂, σ̂), is equivalent to

0 = b2 + 2ηb2N0(a, b) + η2[N2(a, b)−N1(a, b)]. (C.29)

Finally, θ̂ and σ̂ are implicitly defined by the values a and b that solve the system given by Equations
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C.13 and C.29:

0 = a+ ηN1(a, b) (C.30)
0 = b2 + 2ηb2N0(a, b) + η2[N2(a, b)−N1(a, b)]. (C.31)

One can show that this system has a unique solution, which we denote by (a∗, b∗). Moreover, both
of the equations in the system above depend solely on the PDF and CDF of the normal distribution
and parameters η and λ; importantly, they are independent of θ and σ. The solution (a∗, b∗) therefore
characterizes θ̂ and σ̂ as follows: σ̂ = σ/b∗, which implies θ̂ = θ − a∗σ̂ = θ − a∗

b∗
σ. Again, since

a∗ and b∗ are independent of σ, the perceived mean is linearly decreasing in the true variance of
outcomes.

D Reputation Model with Loss Aversion
This section explores the career-concern model of Section 5.1 when the principal is loss averse (λ >
1). In this case, gains and losses affect the principal’s beliefs asymmetrically. Hence, the worker’s
strategy must account for how his effort affects the likelihood that future outcomes will be weighted
as gains versus losses. Technically speaking, the marginal effect of the worker’s current effort on
future wages—Mt from Equation A.31—is no longer deterministic when λ > 1. In particular, the
κt terms are no longer all equal to κG as in Equation A.31, but can be either κG or κLdepending on
whether the future outcome comes as a gain or loss. Thus, the agent’s optimal effort in each round
must now take into account how her behavior will influence the distribution over future realizations
of κt ∈ {κG, κL}. As argued below, this change is relatively minor and does not alter the predicted
shape of the worker’s effort profile in expectation.

Specifically, we derive the worker’s optimal effort policy when T = 3, highlighting that (1) it is
qualitatively similar to the case without loss aversion (λ = 1) analyzed in the main text, and (2) the
intuition behind Proposition 5 continues to hold. In particular, in the three-period model, e1 will fall
below the rational benchmark, while e2 exceeds it. Finally, we argue that these qualitative similarities
between the λ = 1 and λ > 1 cases hold more generally for any T ≥ 3.

Suppose T = 3, and for ease of exposition let δ = 1. Note that e∗3 = 0. Thus, in period 1, the worker
faces the following objective function: Π1 ≡ Ex1 [θ̂1]−c(e1)+E(x1,x2)[θ̂2−c(e2)]. Conditional on x2,
we can write θ̂2 as θ̂2 = θ̂1 +α2(1 +κ2)[x2− ê2− θ̂1] = θ̂1 +α2(1 +κ2)d2, where d2 ≡ x2− ê2− θ̂1.
Hence, the period-1 objective can be written as Π1 = E(x1,x2)[2θ̂1 + α2(1 + κ2)d2 − c(e2)] − c(e1).
Because e2 is a function of e1, optimizing Π1 with respect to e1 requires us to first derive how e2

depends on e1 at the optimum.
The period-2 objective is Π2 ≡ Ex2 [θ̂2] − c(e2) = θ̂1 + α2Ex2 [(1 + κ2)d2|x1] − c(e2). Thus, e2

must satisfy c′(e2) = α2
∂
∂e2

Ex2 [(1 + κ2)d2|x1]. Note that d2 ∼ N(θ̃1 + e2 − θ̂1 − ê2, σ
2
1), where θ̃1 is

the rational estimate of θ following x1 and σ2
1 is the variance of θ̃1 + ε2, which is independent of e1.

Let p2 ≡ Pr(d2 > 0|x1) = 1 − Φ
(
−d̄2
σ1

)
, where Φ is the standard normal CDF and d̄2 = E[d2|x1].

Thus, Ex2 [(1 + κ2)d2|x1] = d̄2 + p2κ
GEx2 [d2|d2 > 0, x1] + (1 − p2)κGEx2 [−d2|d2 < 0, x1]. Since

Ex2 [d2|d2 > 0] = d̄2 + σ1φ
(
−d̄2
σ1

)
/p2 and Ex2 [d2|d2 < 0] = d̄2 − σ1φ

(
−d̄2
σ1

)
/(1 − p2), it follows
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that Ex2 [(1 + κ2)d2|x1] = [1 + p2κ
G + (1− p2)κL]d̄2 − (κL − κG)σ1φ

(
−d̄2
σ1

)
. This implies

∂

∂e2

Ex2 [(1 + κ2)d2|x1] = −(κL − κG)
∂p2

∂e2

d̄2 + [1 + p2κ
G + (1− p2)κL]

∂d̄2

∂e2

− (κL − κG)σ1φ

(
−d̄2

σ1

)(
d̄2

σ1

)(
−1

σ1

)
∂d̄2

∂e2

. (D.1)

From the definition of p2, ∂p2
∂e2

= φ
(
−d̄2
σ1

)(
1
σ1

)
∂d̄2
∂e2

, and since ∂d̄2
∂e2

= 1, Equation D.1 reduces to
∂
∂e2

Ex2 [(1 + κ2)d2|x1] = [1 + p2κ
G + (1− p2)κL]. Hence, the first-order condition for e2 amounts to

c′(e2) = α2[1 + p2κ
G + (1− p2)κL]. (D.2)

Returning to the optimal effort choice in period 1, note that e1 must satisfy first-order condition

Ex1
[
2
∂θ̂1

∂e1

+
∂

∂e1

Ex2 [α2(1 + κ2)d2 − c(e2)|x1]

]
= c′(e1). (D.3)

Analogous to the derivation of Equation D.1, ∂
∂e1

Ex2 [(1 + κ2)d2|x1] = [1 + p2κ
G + (1− p2)κL]∂d̄2

∂e1
,

where ∂d̄2
∂e1

= ∂e2
∂e1
− ∂θ̂1

∂e1
given that d̄2 = θ̃1 + e2 − θ̂1 − ê2. Hence, the first-order condition for e1

amounts to

Ex1
[
2
∂θ̂1

∂e1

+ α2[1 + p2κ
G + (1− p2)κL]

[
∂e2

∂e1

− ∂θ̂1

∂e1

]
− c′(e2)

∂e2

∂e1

]
= c′(e1). (D.4)

Since the worker’s choice of e2 conditional on x1 must satisfy Equation D.2, Equation D.4 yields

Ex1
[
2
∂θ̂1

∂e1

− α2[1 + p2κ
G + (1− p2)κL]

∂θ̂1

∂e1

]
= c′(e1). (D.5)

Since θ̂1 = α1(1 + κ1)d1 where d1 = x1− ê1, ∂θ̂1
∂e1

= α1(1 + κ1). Thus, the first-oder condition for e1

reduces further to c′(e1) = α1Ex1
[
(1+κ1)(2−α2−α2[p2κ

G+(1−p2)κL])
]

= Ex1
[
(1+κ1)(α1+α2−

α1α2[p2κ
G + (1 − p2)κL])

]
, where the second equality follows from the fact that α1(1 − α2) = α2.

Note that [p2κ
G + (1− p2)κL] = E[κ2|x1] given the optimal policy. Hence, the first-order condition

for e1 can be written as c′(e1) = E(x1,x2)[(1 + κ1)(α1 + α2[1 − κ2α1])]. This first-order condition is
equivalent to the one with λ = 1 (see Equation A.31) aside from the expected value over κt on the
right-hand side: with λ = 1, each κt = κG deterministically.

Given the similarity between the solutions with λ = 1 and λ > 1, the predictions of Proposition
5 continue to hold with λ > 1. We can see this directly in the analysis above. The first-order
condition for e2 requires that c′(e2) = α2[1 + p2κ

G + (1 − p2)κL]. Effort absent misattribution,
however, solves c′(er2) = α2. Since α2[1 + p2κ

G + (1 − p2)κL] > α2, second-round effort under
misattribution exceeds the rational benchmark. Contrastingly, first-round effort may fall short: effort
absent misattribution solves c′(er1) = α1 + α2, while effort under misattribution solves c′(e1) =
E(x1,x2)[(1 + κ1)(α1 + α2[1− κ2α1])].
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One could continue this backward induction argument for arbitrary T and show that, in general,
et = c−1

e (E[M l
t |et, ht−1]), whereM l

t ≡ (1+κt)
{
δαt +

∑T
τ=t+2 δ

τ−tατ−1

(∏τ−2
j=t [1− κj+1αj]

)}
and

E[M l
t |et, ht−1] is the expected value ofM l

t conditional on the history, the worker’s current choice, and
his policy going forward. Recall that when λ = 1, et = c−1

e (Mt), where
Mt = (1 + κG)

{
δαt +

∑T
τ=t+2 δ

τ−tατ−1

(∏τ−2
j=t [1− κGαj]

)}
(see Equation A.31). Hence, the key

difference between the solution with λ > 1 and the one with λ = 1 is that the expected values of κt in
M l

t will fall in the interval [κG, κL] rather than remain constant at κG deterministically. This change
does not alter the qualitative pattern of the effort profile in expectation.
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