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Abstract

A common critique of models of mistaken beliefs is that people should recognize their error
after observations they thought were unlikely. This paper develops a framework for assessing
when a given error is likely to be discovered, in the sense that the error-maker will deem her
mistaken theory implausible. The central premise of our approach is that a person channels
her attention through the lens of her mistaken theory, ignoring and discarding information her
mistaken theory deems unimportant. We propose solution concepts embedding such channeled
attention that predict when a mistaken theory will persist in the long run even with negligible
costs of attention, and we use this framework to study the “attentional stability” of common
errors and psychological biases. While many costly errors are prone to persist, in some situa-
tions a person will recognize her mistakes via “incidental learning”: when the data she values
given her mistaken theory happen to also tell her how unlikely her theory is. We investigate
which combinations of errors, situations, and preferences tend to induce such incidental learn-
ing vs. factors that render erroneous beliefs stable. We show, for example, that a person may
never realize her self-control problem even when it leads to damaging behavior, and may never
notice the correlation in others’ advice even when that failure leads her to follow repetitive
advice too much. More generally, we show that for every error there exists an environment
where the error persists and is costly. Uncertainty about the optimal action paves the way for
incidental learning, while being dogmatic creates a barrier.
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1 Introduction

Many recent models explore the economic implications of ways that people misunderstand the
world. These models span a wide range of mistakes—including simple empirical misconceptions,
bad statistical reasoning, faulty social inference, and distorted beliefs about one’s personal traits.
A common critique of such models is that people should realize their errors after observing events
they think are unlikely or impossible. Someone who suffers from the gambler’s fallacy, for in-
stance, will see more streaks than she expects. A person who does not think through that others
are following the crowd will see an unexpected degree of consensus. And a person who is naive
about her self-control problems will indulge herself more often than she anticipates. It seems that
error-makers should notice that something is amiss. Won’t people get a clue?

This paper develops “solution concepts” to assess when people making specific mistakes in
particular situations will eventually notice their errors. These concepts rest on two central criteria.
First, we clarify that the absolute unlikeness of an observation wouldn’t (and shouldn’t) induce a
person to abandon an erroneous theory. Rather, a person gets a clue only when an observation is
far more likely under a compelling alternative theory that she considers.

Our primary emphasis is a second criterion: building on ideas in Sims (2003), Woodford (2012),
Gabaix (2014) and, primarily, Schwartzstein (2014), we examine the learning process of a person
who may not notice information that seems to her irrelevant. Attention and memory do not act
like cameras that faithfully record all we see. Rather, we attend to and remember a small subset
of available information, and we direct this attention toward information we think is task relevant.
Our “narrow channel of consciousness” (Chater 2018) is surprisingly effective at blocking out
information we’re not looking out for. Indeed, while only 20 percent of memory researchers agree
with the statement that “people generally notice when something unexpected enters their field of
view, even when they’re paying attention to something else,” 80 percent of the public think this
statement is true (Simons and Chabris 2011).1

There are vivid and more mundane examples of our failure to notice unexpected events. People
tasked with counting the number of passes in a film clip of basketball players often fail to notice a
gorilla walking across the court (Simons and Chabris 1999). Indonesian seaweed farmers seem to
persistently fail to optimize along a dimension (pod size) they wrongly treat as irrelevant despite
being exposed to rich data from which they could learn if they paid attention (Hanna, Mullainathan,
and Schwartzstein 2014). And we assess very few of all the possible correlations among variables

1Likewise, Simons and Chabris (2011) find that 100 percent of memory researchers disagree with the statement
that “human memory works like a video camera, accurately recording the events we see and hear so that we can review
and inspect them later” while only 40 percent of the public disagree with it.
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that we see day to day, looking for them only when we think we have something useful to learn.2,3

We define solution concepts embedding such “channeled attention” that predict when a person’s
mistaken theory might survive after infinite data, where data is encoded and analyzed if and (in
most of our analysis) only if it is perceived as valuable within that theory. We use this framework to
analyze the “attentional stability” of common errors and psychological biases in given situations.
In many cases, a person won’t discover an error because her misspecified model leads her to ignore
the very data necessary to prove that she is wrong.

Our framework jibes with recent theories of rational inattention (e.g., Sims 2003; Gabaix 2014)
in the sense that people in our model are more likely to attend to information that they think is
valuable. But theories of rational inattention differ by assuming rational expectations: what people
think is valuable is, on average, in fact valuable. People who are making errors about the world are
likely to misestimate the value of potential information, however. A person overconfident about her
self control may see little value in carefully tracking her spending habits. A person who neglects
redundancy in advice and treats it as independent does not ask whether it is in fact correlated. Our
framework for “subjectively rational inattention” highlights how erroneous priors about the value
of information can lead people astray in their attentional strategies.

Attention in our framework is then not only limited, it is more generally misguided: along with
ignoring information she thinks has no value, she may also pay careful attention to information that
is, in fact, useless. Consumers may see illusory patterns indicating that ineffective remedies can
ward off illness or that branded headache medicines more effectively reduce pain than generics.
Investors may pay too much attention to past mutual fund returns to predict future success. Workers
may infer too much from the redundant advice of several colleagues when it would be better to
follow a single one. In the language of Handel and Schwartzstein (2018), the major stumbling
block to processing truly important information in our model is not a “friction” that causes people
to view processing as too costly, but rather a “mental gap” that leads people to assign the wrong
value to processing.

A person in our model discovers her mistakes only via incidental learning; that is, when infor-

2We assume few readers of this article (besides Capricorns, who tend to be gullible) believe that the newspaper’s
daily horoscope holds any information for us. Our skepticism about the goodness of fit between days where we are
told “a friend will disappoint you today” and those where a friend actually disappoints us might lead us to ignore
the relationship, even if we ruminate on every instance in which a friend has disappointed us and always read our
horoscope out of our partner’s insistence. (Likewise, those who believe in horoscopes may read them every day
without noticing a lack of correlation.) Given our theory that the horoscope is almost surely meaningless, we would
never discover if it turned out to be right. If there are people who think we are foolish for ignoring newspaper
horoscopes, they may be surprised that we don’t believe them, but they shouldn’t be surprised that we haven’t carefully
noticed the correlations.

3Research such as Bordalo, Gennaioli, and Shleifer (2012, 2013, 2017) have channeled economists’ attention to
the intuition and evidence that unexpected or surprising events may receive disproportionate weight in decisions. We
emphasize that unexpected events we’re not looking out for often go unnoticed.
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mation she deems useful given her bad theory happens to also tell her how unlikely her theory is.
Our framework yields several predictions about what does and does not get people to wake up.
First, since people are not on the lookout for their mistakes, errors may persist even when they are
very damaging: We show that for every error, there exists an environment where that error persists
and is (arbitrarily) costly. Second, a sense of certainty prevents getting a clue: People who think
they have nothing to learn need not notice anything; coarse models that ignore predictive signals
are more stable than overly elaborate models that assume signals are predictive even when they
are not. Third, a person is less likely to get a clue when the environment makes it easier to make
decisions without paying detailed attention: Being able to delegate decisions or make them by
querying a database creates barriers to incidental learning.

Section 2 provides an extended example about incorrect medical beliefs that introduces some
basic concepts of our model. Section 3 then begins formalizing this framework. Although our
principles could be applied to a broader class of errors, we focus on “quasi-Bayesian” models: the
agent is Bayesian with a misspecified prior π over a set of parameters, where π either assigns pos-
itive probability to impossible parameters or zero probability to possible parameters.4 We impose
no further assumptions about which errors people make ex ante—they could arise, for instance,
from motivated reasoning, cognitive biases, or bad theories of the world. Our goal then is to pro-
vide a general framework for assessing when people are prone to discover such an error, taking the
misspecified model as a primitive. To this end, we formulate in Section 3 a baseline criterion for
when a person deems her misspecified prior “inexplicable” under full attention, meaning that she
eventually finds π an implausible explanation for what she observes. Implausibility is assessed rel-
ative to an alternative “light-bulb model” λ—a model that people might entertain when doubting
their prior conception of the world. More specifically, we say that π is “inexplicable” with respect

4Many recent models, spanning a wide range of errors, are either quasi-Bayesian or very close. Examples include
Barberis, Shleifer, Vishny (1998) on stock-market misperceptions, Rabin (2002) and Rabin and Vayanos (2010) on the
gambler’s and hot-hand fallacies, Benjamin, Rabin, and Raymond (2016) on the non-belief in the law of large numbers,
and Spiegler (2016) on biases in causal reasoning. Examples of biases about misreading information include Rabin and
Schrag (1999) and Fryer, Harms, and Jackson (2018) on confirmation bias and Mullainathan (2002) on naivete about
limited memory. Models of coarse or categorical thinking include Mullainathan (2001), Fryer and Jackson (2008),
Jehiel (2005), Jehiel and Koessler (2008), Mullainathan, Schwartzstein, and Shleifer (2008), and Eyster and Piccione
(2013). Relatedly, models that incorporate errors in reasoning about the informational content of others’ behavior
include Eyster and Rabin (2005), Esponda (2008), and Madarász (2012). Such errors have been explored in social-
learning settings by DeMarzo, Vayanos, Zweibel (2003), Eyster and Rabin (2010), Eyster and Rabin (2014), Bohren
(2016), and Gagnon-Bartsch and Rabin (2017). Models that assume false beliefs about others’ strategic reasoning or
information include Camerer, Ho, and Chong (2004) and Crawford and Iriberri (2007). Misspecified models have also
been considered in specific applications, such as firms learning about demand (Kirman 1975; Nyarko 1991) as well as
macroeconomic forecasting (Sargent 1993; Evans and Honkapohja 2001). Further from the quasi-Bayesian approach,
other models posit inconsistencies in a person’s beliefs across periods. Although below we translate it to something that
fits in our framework, naivete about self-control, wherein people believe they will have more self-control in the future
than they truly will, falls within this broader category. The model of projection bias in Loewenstein, O’Donoghue and
Rabin (2003) likewise posits that somebody may have systematically different beliefs about future tastes as a function
of fluctuating contemporaneous tastes.
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to λ if observations are “sufficiently” more likely under the light-bulb than her prior. Otherwise, π

is explicable with respect to λ . We primarily take the light-bulb model λ to be the true model of
the world.

In Section 4, we turn to our primary focus: the role of channeled attention. We assume the agent
may rationally—from the perspective of her wrong theory—ignore data she considers irrelevant
to her payoffs. Our analysis of channeled attention revolves around what we call a “sufficient
attentional strategy” (SAS), which specifies what the person notices from the available data. A SAS
must satisfy two conditions: First, a person notices any data that she believes is useful for making
a decision now or in the future. Second, a person cannot today notice something that happened
yesterday unless she noticed it yesterday; that is, one can only remember data she noticed in the
first place.5 Although a SAS does not rule out attention to seemingly useless information, we often
focus on “minimal” SAS’s where the person notices no more than she finds useful.6

To tractably capture the role of a misperceived value of information, we assume that people pay
attention to some data if (and often only if) they perceive any benefit of attention. This roughly cor-
responds to limits where attentional costs are vanishingly small (but not-zero) and where people are
arbitrarily patient. Our predictions about when people fail to get a clue are therefore conservative:
if a misspecified model is stable in our framework, then it would remain stable after incorporating
realistic attentional costs.

Relative to Schwartzstein’s (2014) stylized setting, where a person channels her attention based
on wrongly thinking some variable is unimportant, our “SAS” approach is less restrictive: when
following a SAS, the agent recalls a coarsening of the true history each period that she deems suf-
ficient for any future decision. This allows us to apply the framework to a wide range of erroneous
models, and captures the important feature that one can pay attention to aspects of variables with-
out noting everything relevant about them. For instance, consider a manager who wants to learn a
worker’s success rate at a given task and assumes that a worker’s performance rate is constant over
time. The manager will find it sufficient to notice the worker’s historical success frequency and

5We allow a person to stop noticing and forget information once she deems it no longer useful. We call this
volitional recall to contrast with more familiar assumptions of imperfect recall that impose exogenous imperfections
in memory. We consider automatic recall—where a person forever recalls and notices all data previously noticed—in
the appendix.

6We show that when the person follows a minimal SAS, she never notices events that her theory deems impossible.
While tempting to think that such events would force the agent to reconsider her misspecified model, channeled
attention in fact limits the impact of subjectively zero-probability events on the discovery of errors. Researchers
studying quasi-Bayesian models typically do one of two things to sidestep the possibility of seemingly-impossible
observations: (i) they impose structure such that those observables an agent would deem impossible cannot happen—
this preserves coherent Bayesian updating within the agent’s misspecified model under full attention, or (ii) they
assume that individuals who are dogmatically wrong about some component of their model simply do not attend to
data about this dimension. For instance, an agent in some learning context (e.g., job search, as in DellaVigna and
Passerman 2005) might be assumed to omit data on her self-control in the updating process. These models implicitly
adopt a form of channeled attention.
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not, for example, any temporal trends in successes and failures. A gym-goer who is naive about
his self-control problem finds it sufficient to simply notice whether he wants to skip the gym on
any given day without further noticing if this because he is particularly busy or just lazy.

We say (roughly) that model π is “attentionally inexplicable” relative to an alternative λ and a
given SAS if, over an infinite period of time, the noticed data becomes infinitely more likely under
λ than π; otherwise, it is “attentionally explicable”. When a misspecified model is attentionally
explicable relative to the truth, we call the SAS used an “attentionally stable equilibrium” given π .
Often there exist attentionally stable equilibria for models that are inexplicable with full attention.
This is not simply because inattention leads such data to be lost from memory—indeed, we show
that being able to freely look back at all previous data (e.g., it is recorded somewhere) does not
lead people to wake up. A person who channels his attention solely on the data his model deems
relevant will often fail to notice data that screams his model is wrong.7

Before a more general analysis, in Section 5 we examine errors familiar from existing research.
We first analyze when and how channeled attention can lead to persistent underestimation of self-
control problems.8 Some researchers in fact suggest that rational learning should correct these
problems and Ali (2011) argues that the only form of incorrect beliefs likely to survive is exag-
geration of our self-control problems. We argue that this path to sophistication is not a foregone
conclusion—overestimation of self control is often part of an attentionally stable equilibrium—
which helps explain the empirical reality that people are not fully sophisticated (e.g., Augenblick
and Rabin 2018; Fedyk 2017). A person need not wake up to the extent of her self-control prob-
lems if, under her model, there is no benefit to learning the degree of her problems. For example,
the person does not wake up if she is dogmatic about her self control, as assumed by much of the
theoretical literature on naivete and partial naivete (e.g., O’Donoghue and Rabin 2001; Eliaz and
Spiegler 2006). When the person is not dogmatic, then she wakes up in situations where uncertainty
about self control translates into uncertainty about optimal behavior. In this case, channeled atten-
tion enables persistent naivete in some situations but not others. Such situation-specific naivete

7There are related models of paradigm shifts and “testability” (e.g., Hong, Stein, and Yu 2007; Ortoleva 2012;
Al-Najjar and Shmaya 2014). While studying paradigm shifts has the flavor of analyzing when people have “light-
bulb moments”, those papers do not study the interaction between light-bulb moments and inattention. The logic
behind why channeled attention prevents light-bulb moments is similar to self-confirming equilibrium (Fudenberg and
Levine 1993) and why people can maintain incorrect beliefs about options they rarely experiment with in “bandit
problems” (Gittins 1979). However, beliefs are consistent with available data in those frameworks—the friction is
data collection—while beliefs are only consistent with encoded data in ours—the friction is data processing. Finally,
we contribute to the growing literature on learning with misspecified models (e.g., Barberis, Shleifer, and Vishny
1998; Rabin 2002; Rabin and Vayanos 2010; Benjamin, Rabin, and Rabin 2015; Spiegler 2016; Esponda and Pouzo
2016; Bohren 2016; Heidhues, Kőszegi, and Strack 2018; Fudenberg, Romanyuk, and Strack 2017) by providing a
framework to assess when misspecified models are stable.

8A maintained assumption (discussed in greater detail in the conclusion) is that a person’s awareness of self-
control problems is local to the situation, so he may wake up to those problems in one situation without transferring
that knowledge to another.
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may shed light on why, despite the low demand for commitment devices overall (e.g., Laibson
2015), many people have experience using a commitment device in some situation.

We then analyze the implications of channeled attention for a person who neglects the correlated
nature of others’ advice (as in DeMarzo, Vayanos, and Zwiebel 2003; Eyster and Rabin 2010,
2014; Enke and Zimmermann 2017). Imagine, for instance, a person in a new job who seeks ad-
vice from her colleagues and updates about the quality of their advice. Whether the person wakes
up to an erroneous theory that others’ advice is conditionally independent (ignoring that colleagues
also talk with each other) depends on the level of feedback she receives. If she always observes
whether advice was good or bad ex post, then she can learn about each individual colleague sim-
ply by comparing his recommendations with the eventual outcomes. Since this strategy does not
record correlation across colleagues’ advice, she will fail to notice her mistaken model, and, as a
result, persistently overreact to consensus advice. However, if she does not always observe whether
advice was good or bad, then her model demands that she record data on the correlation in her col-
leagues’ advice: the efficient way to update about the quality of a colleague’s when the outcome
is not observed requires “benchmarking” his advice to that of other colleagues she believes are
knowledgeable. Any sufficient attentional strategy now requires her to confront the correlation in
others’ advice. Therefore, with limited feedback, we predict she will discover her mistake—advice
is not actually independent. Interestingly, the error is more stable in the case with more feedback.

In Section 6 we turn to general factors that influence an error’s stability. We first show that
there is not a clear link between the cost of a mistake and when a person discovers that mistake.
In particular, for every misspecified model there exists an environment where that error leads to
arbitrarily costly mistakes and is stable. For a broad class of these models however, there exist
alternative environments where the error is costless yet will necessarily be discovered. Given that
it’s not the cost of a mistake, what factors do indeed force the person to confront her mistake?

Our primary organizing principle behind the discovery of errors is that uncertainty about the
optimal action paves the way for incidental learning. The simplest logic for when people fail to get
a clue arises when they feel they have little to learn and, as a result, do not need to pay attention.
For instance, if a person is confident that managed funds must outperform index funds, she may
blindly invest in managed funds without noticing that her guiding theory is false. Moving beyond
such simple dogmatic models, we categorize various classes of models based on whether they
are attentionally stable irrespective of the decision problem and hence more likely to persist—
a feature we call preference-independent attentionally explicable (or PIAE). This characterization
reveals that PIAE errors are typically “overly coarse”—they ignore relevant outcomes or predictive
signals. Errors that are not PIAE, on the other hand, typically make the right distinctions or are
“overly fine”—they place importance on truly irrelevant outcomes or signals. A simple intuition
underlies this pattern: when a person thinks a variable does not matter, she is certain about how
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much it matters—not at all. On the other hand, when a person thinks a variable does matter,
she may be uncertain about its importance. It is this uncertainty that induces incidental learning.
Section 6 concludes by discussing some features of the decision problem that are likely to induce
attentional stability and instability.

Section 7 reiterates and clarifies some of the features of our framework and discusses potential
limitations. In particular, our notion of a SAS requires attention to only those data with instrumen-
tal value; realistically, there are many things we cannot help but notice even when we think they
don’t matter. Section 7 concludes by speculating on further applications to delegation, persuasion,
and debiasing.

2 Example: Misperceived Benefits of Medical Treatments

This section uses a simple example to illustrate the basic components of our framework. People
seem to spend a great deal out of pocket on medical treatments that are seemingly ineffective,
such as remedies to help lose weight, recover from a cold, or get better sleep. This section’s
example reflects a plausible reason why people might exaggerate the efficacy of such treatments:
while people likely notice how quickly they recover with treatments, they may underestimate how
quickly they recover without treatment and therefore fail to notice this baseline. Miscalibrated
beliefs about recovery without treatment along with channeled attention can generate persistent
overoptimism about the efficacy of treatments.

Imagine a person learning about the effectiveness of a medical treatment. He accumulates data
on the treatment by noticing his own experience and that of acquaintances who might use the
treatment. More specifically, each period there is a probability v> 0 that he must choose whether to
use the treatment (e.g., he feels sick on a fraction v of days). Suppose the treatment has cost c∈R+

and can potential increase the likelihood of a fast recovery; the event of a fast recovery yields a
known benefit b∈R+. The person’s choice to use the treatment thus depends on his current beliefs
about the likelihood of fast recovery with treatment, pT ∈ [0,1], and without treatment, pN ∈ [0,1].9

In addition to noticing his own recovery results, assume the person can observe (from news media
or word-of-mouth) the choices and outcomes of others. This guarantees that an attentive person
will have rich enough data to learn parameters pT and pN independent of his own behavior: over
time, he will be exposed to a large sample of results with and without treatment.10

9More precisely, the person derives flow utility u(xt ,yt) = b ·1{rt = 1}−c ·1{xt = T}, where yt is an indicator for
whether the person gets better quickly and xt ∈ {T,N} is the patient’s treatment choice.

10This assumption that the person continually receives feedback on both options independent of his action shuts
down experimentation concerns that are known to prevent learning even with rational agents. Here, the person’s
optimal action in each round is simply the myopically-optimal action that maximizes current flow utility. Although in
principle our framework can be applied to agents who have experimentation motives, we assume them away here and
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We consider learning when the person is dogmatic about the natural recovery time—that is, he
is (perhaps wrongly) sure that pN = p̂N . Low values of p̂N capture the belief that treatment is
necessary for fast recovery, as when people don’t realize the self-limiting nature of colds. The
person is uncertain, however, about the probability of fast recovery with treatment. Letting π

denote his prior beliefs over (pN , pT ), we assume π is degenerate on p̂N and non-degenerate over
pT . We further assume the support of π includes: (i) the true efficacy of treatment, and (ii) some
pT that would render treatment optimal in his mind and some where it would not, ensuring that his
decisions are non-trivial. That is, letting (p∗N , p∗T ) denote the true values of (pN , pT ), the support
of π contains values of pT that are less than and greater than p̂N , as well as pT = p∗T .

Given these priors, the person continually updates his beliefs about pT in a Bayesian fashion,
but does not update his beliefs at all about the false dogmatic belief that p̂N 6= p∗N . With the rich
data described above, the person would learn the true p∗T , while maintaining his false belief p̂N .

Here is where a commonly intuited challenge to such models lies: what is the person to make
of seeing a proportion of natural recoveries that differs from p̂N? This issue is most stark when
p̂N = 0 and p∗N > 0. Hence, the person thinks fast recovery is impossible without treatment, yet
he sees it happen. More broadly, for any p̂N 6= p∗N , the person will witness an extremely unlikely
frequency of people recovering quickly without treatment. If he believes p̂N = .05, but sees 800
out of 1,000 patients recover fast without treatment, won’t he get a clue?

Our baseline, full-attention concept of explicability (sketched in the introduction and formalized
below) reflects this common intuition. A misspecified model π is inexplicable relative to an alter-
native “light-bulb” model that puts weight on (p∗N , p∗T ) whenever (p∗N , p∗T ) is outside the support of
π . Thus, if the person questions his initial theory and entertains the idea that pN = .80 rather than
.05, our explicability criterion says he will in fact realize this is so.

But if the person is dogmatic about p̂N , why should he attend to how fast people recover when
they are not treated? Under a SAS, the person must attend to data from those who used the treat-
ment but can neglect data from those who did not. As a result, he may never learn that p̂N is
wrong. Under a coarsest SAS where the person ignores recovery times of those who abstain from
treatment, π is attentionally explicable.11 The person may, as a result, make persistent errors when
choosing to use the treatment. There is an attentionally-stable equilibrium where the person ne-
glects recovery times without treatment and ends up best responding to the belief pN = p̂N . When
the misspecified prior underestimates natural recovery rates (p̂N < p∗N), the equilibrium involves

in most of the paper.
11Such a “coarsest” (“minimal”) sufficient attentional strategy has the person keep track of only his posterior beliefs.

That is, he enters each round t with a belief πt over (pN , pT ) and updates that belief to πt+1 based on round t’s outcome.
He then enters round t +1 recalling only πt+1: he does not recall the exact sequence of outcomes that led to πt+1. This
is not necessarily the only minimal SAS, and there are examples where π is attentionally inexplicable under other
minimal SASs.
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persistent over-treatment. Roughly put, the “self-limiting” nature of certain medical conditions—
e.g., colds, pain—is misattributed to treatment: the “treatment effect” is overestimated because of
a misconceived baseline recovery rate that remains in place due to the combination of dogmatically
incorrect beliefs and channeled attention.12

Echoing a broader theme that will emerge later, a reason why the person’s bad theory persists
here is that his beliefs about natural recovery times are strong enough that he believes he can
completely neglect the outcomes that would tell him his theory is wrong. As such, the logic of
the example continues to hold even if the person is not dogmatic but thinks that nothing he learns
about pN will impact his decision regarding treatment. If the person’s bad theory instead involves
sufficient uncertainty over pN so that he feels compelled to learn pN to make optimal decisions, he
would incidentally learn his theory is wrong even when the uncertainty is miscalibrated (e.g., π is
concentrated on values of pN less than p∗N). Below we more systematically explore when people
get a clue.

3 Framework With Full Attention

This section formalizes the first ingredients of our framework: light-bulb models and explicability.
After describing the learning environment, we present our baseline criteria for assessing whether a
decision maker will discover her errors. (We incorporate channeled attention in Section 4.)

3.1 Environment

Consider a person updating his beliefs over a parameter θ ∈ Θ that influences the distribution of
payoff-relevant outcomes. For instance, in the medical example above, θ is the vector of recov-
ery rates with and without treatment, (pT , pN). Parameter θ may be a feature of the person’s
surroundings or measure the extent of his biases, like present bias.

12Limiting beliefs and actions in attentionally-stable equilibria may be quite biased. In this example, when the
person fails to correct his underestimated perception of pN , perhaps surprisingly he may additionally over-estimate
pT . This happens when the person does not always observe others’ treatment choices. Specifically, suppose that for
each individual whose outcome he observes, he additionally learns that individual’s treatment choice with probability
γ ∈ [0,1]. Additionally, to draw inference about pT from those with unobserved actions, suppose the person knows that
a fraction q ∈ [0,1] of individuals use the treatment when sick. Under the ASE described above—the person ignores
data from those who he knows abstained from treatment—he comes to believe that pT takes a value that maximizes the
likelihood of data he notices. This value of pT minimizes the distance (in terms of the Kullback-Leibler divergence)
between his perceived distribution of recoveries (which assumes pN = p̂N) and the true distribution (with pN = p∗N).
To see how channeled attention distorts perceptions of pT , suppose in reality the treatment has no additional benefit,
so pT = pN . For sake of a simple numerical example, assume pT = pN = 1

2 , but the person wrongly believes p̂N = 0.
Further setting γ = q = 1

2 and v = 0, the person comes to believe p̂T = 2
3 . Interestingly, the extent to which the person

overestimates pT is increasing in the natural recovery rate, p∗N : the person is more likely to use the treatment when he
is more likely to recover naturally.

9



As depicted in Figure 1, each period t = 1,2, ... is structured as follows: the person (i) receives
a signal st ∈ St about θ , (ii) takes an action xt ∈ Xt , and (iii) can see a realized outcome, or “res-
olution”, rt ∈ Rt . In terms of the medical example of Section 2, the person chooses a treatment
xt each round that he is sick, and then his recovery time rt is realized. The person uses vector
yt = (rt ,st), which we call an “observable”, to learn about θ . At the end of each period t, he earns
payoff ut(xt ,yt |ht), which depends on the current action and observable, as well as (in some cases
spelled out below) the history ht . In addition to determining period-t’s payoff, observable yt may
also contain information about the optimal action in future periods.

For simplicity, our general analysis assumes that Θ and each Yt ≡ Rt ×St are finite valued, each
Xt is compact, and ut(xt ,yt |ht) is continuous and bounded in xt for all yt and ht . However, some of
our applications drop these assumptions in straightforward ways.

Figure 1: Timeline of events within period t.

Period t
begins

Period t
ends

Realize
signal

st ∈ St

Take
action

xt ∈ Xt

Realize
outcome

rt ∈ Rt

Earn
payoff

ut(xt ,yt |ht)

Each round results in the outcome (yt ,xt). The history through time t,

ht ≡ (st ,yt−1,xt−1,yt−2,xt−2, . . . ,y1,x1),

contains all the information possibly observed prior to choosing action xt . Let Ht be the set of all
possible histories ht up to time t, and let H ≡ ∪∞

t=1Ht .
Conditional on θ and the history, the signal in round t is drawn according to distribution

Ps(st |ht ,θ). The resolution in round t depends additionally on the signal and action realized in t,
and we denote its distribution by Pr(rt |xt ,ht ,θ). These two distributions form a joint distribution
over observations yt denoted by P(yt |ht ,θ). Finally, we let π∗ ∈ ∆(Θ) denote the true probability
distribution from which nature draws θ . In sum, the decision environments studied in this paper
are described by the tuple (Θ,×∞

t=0Xt ,×∞
t=0Yt ,×∞

t=0ut ,P,π∗).
We focus on situations where the person begins with a “misspecified” model of the world. We

assume that the person correctly knows the likelihood of outcomes conditional on the parameter but
has incorrect beliefs about which parameters are possible. The set Θ consists of all parameters that
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either the person or modeler deem possible. We define a misspecified model or “theory” as a prior
belief over parameters π ∈ ∆(Θ) such that supp(π) 6= supp(π∗).13 Misspecified theories therefore
place positive chance of parameters that never occur or neglect parameters that might actually
occur. While this assumption may raise concerns that the agent in our framework trivially fails to
learn because he does not entertain the true parameter in his model, this is not the case: it will be
clear below that, with full attention, the agent generally discovers his model is misspecified. We
further assume that starting with a false model is the person’s only mistake: he updates according
to Bayes’ Rule given his prior π (when possible) and chooses actions that maximize his expected
lifetime utility with respect to these updated beliefs.

Unless otherwise noted, we impose the following assumption, which implies that the person
knows his actions do not affect what he can learn:

Assumption 1. For all t ∈N, ht ∈Ht , xt ∈ Xt , yt ∈Yt and θ ∈Θ: P(yt |xt ,ht ,θ) = P(yt |yt ,θ), where
yt ≡ (yt−1,yt−2, . . . ,y1).

Assumption 1 is made to focus on cases where any lack of learning is due to insufficient data
or attention, not insufficient experimentation. Unless explicit, we also assume that payoffs in
period t are independent of the history. Without an incentive for experimentation, this ensures that
myopically optimal actions are in fact long-run optimal:

Assumption 2. For all t ∈ N and θ ∈ Θ, action set Xt is independent of ht , and for all xt ∈ Xt ,
yt ∈ Yt , and ht ∈ Ht , ut(xt ,yt |ht) is independent of ht .

Under Assumption 2, we write ut(xt ,yt |ht) simply as ut(xt ,yt).

3.2 Illustrative Examples

Throughout the paper, we will use the following two stylized examples, along with the example in
Section 2, to help illustrate our framework and results.

3.2.1 Stylized Prediction Task

Section 2 describes a situation where a person exaggerates the importance of a variable. Another
class of examples involves “predictor neglect,” where a person neglects the importance of a vari-
able that actually helps predict payoffs. Examples include seaweed farmers failing to appreciate
the importance of pod size (as in Hanna, Mullainathan and Schwartzstein 2014); small investors
failing to appreciate the importance of analyst affiliation when interpreting investment recommen-
dations (as in Malmendier and Shanthikumar 2007); or investors failing to appreciate that the way a

13Although misspecified theory could in principle have the same support as the true model, our analysis will make
clear that (given our assumption that Θ is finite) the only case of interest is supp(π) 6= supp(π∗).
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manager chooses to report current earnings predicts future earnings (as in Teoh, Welch, and Wong
1998a and 1998b).

We will consider a more general form of predictor neglect in Section 6, but to fix ideas consider
a person who predicts the likelihood of a binary outcome each round (e.g., whether earnings will
go up or down). The outcome rt ∈ {0,1} is realized after the person announces a guess xt ∈ [0,1]
about the likelihood that rt = 1, and then the person earns a payoff ut = −(xt − rt)

2. He thus has
incentive to guess accurately.

Furthermore, imagine that the probability of outcome rt = 1 in round t may depend on a signal
st ∈ {A,B} observed prior to the outcome (e.g., how a manager reports current earnings). For
each s ∈ {A,B}, let θs denote the probability that rt = 1 following signal s, so the parameter of
interest is θ = (θA,θB). (In the earnings-prediction example in Teoh, Welch, and Wong 1998, θs

represents the likelihood that earnings increase following an earnings report of type s.) Clearly
signals help predict outcomes whenever θA 6= θB. In a model with predictor neglect, however, the
person dogmatically believes that outcomes have the same distribution regardless of signals; that
is, he believes θA = θB. Hence, the dogmatic person believes signals are useless. In traditional
models with full attention, the person would notice these signals despite his initial belief that they
have no value. Yet we make clear below that with channeled attention, the person will be free to
ignore them.

The prediction task above may suffer from other biases as well, such as the gambler’s fallacy.
In this case, the person wrongly thinks past outcomes negatively autocorrelate with the current
one. Consider Rabin’s (2002) model of the “Law of Small Numbers” where the person updates
as if the outcomes associated with signal s ∈ {A,B} are drawn without replacement from an urn
of size K ∈ N containing dθsKe “high” outcomes (r = 1) and b(1− θs)Kc “low” outcomes (r =
0).14 Given that K → ∞ corresponds to the true model where outcomes are i.i.d., parameter K

measures the extent of the person’s misspecification. Hence, the relevant parameter vector is now
θ = (θA,θB,K), and a misspecified model puts positive weight on θ ’s with K < ∞. For instance,
if the person dogmatically believes K = 4 and θA = θB = 1

2 , then he wrongly thinks the likelihood
of two high outcomes in a row is 1

2 ×
1
3 = 1

6 instead of 1
4 .

3.2.2 Stylized Choice Task

Consider a person who decides each period whether to take action x = A or x = B. Option x ∈
{A,B} yields utility ux− cx, where ux ≡ αvx represents the gross benefit and cx the cost of option
x. Parameter α > 0 captures how much the agent cares about these benefits. For instance, if A

and B represent two pain medications, then α might capture the agent’s sensitivity to pain and

14To avoid observations inconsistent with the person’s model, Rabin (2002) assumes the urn is “refreshed” every
dθsKe periods.

12



hence to differences in drug efficacy. The person is initially uncertain about θ = (vA,vB) but can
costlessly observe this pair whenever he wants. Still, the person may fail to gather this information
if he has a bad theory of θ . For instance, as documented by Bronnenberg, Dubé, Gentzkow, and
Shapiro (2015), people may choose branded drugs (action A) over less expensive and clinically
equivalent generics (action B). Given the price premium for branded drugs, the likely reality is
that u∗A− cA > u∗B− cB. Furthermore, readily available information exists (often explicitly printed
on the packaging) revealing that the generic is the better option. A dogmatic belief that generics
are inferior would be corrected in a traditional model with full attention, but (as discussed below)
channeled attention may prevent a dogmatic consumer from noticing this illuminating information.

3.3 Light-Bulb Theories and Explicability

We now formalize our criterion for assessing when noticed data will lead a person to discover
that his misspecified model π is false. Roughly, we say that π is inexplicable relative to “light-
bulb” model λ ∈ ∆(Θ) if observables are infinitely more likely under the light-bulb than the prior.
Otherwise, we say π is explicable relative to λ .

While most of our analysis maintains Assumption 1 so that observables are unaffected by
actions, we define explicability more generally. Without Assumption 1, explicability must be
designated with respect to the person’s behavior. Denote the person’s behavioral strategy by
σ = (σ1,σ2, . . .), where each σt : Ht → ∆(Xt). We say that behavioral strategy σ is π-optimal
if for all t and ht ∈ Ht that occur with positive probability under π and σ , σt maximizes expected
continuation utility, Ut ≡ ∑

∞
τ=t δ τ−tuτ for some δ ∈ (0,1].

Definition 1. Given true parameter θ ∗, theory π ∈ ∆(Θ) is θ ∗-inexplicable with respect to λ ∈
∆(Θ) and π-optimal behavioral strategy σ if the Bayes Factor Pr(ht |π)/Pr(ht |λ ) converges to 0 in
t with positive probability when the person follows strategy σ . Otherwise, π is θ ∗-explicable with
respect to λ and σ .

To motivate this criterion, suppose a Bayesian starts not with prior π but instead puts infinitesi-
mal weight ε ≈ 0 on an alternative model λ . That is, his prior is (1− ε) ·π + ε ·λ . Is it possible
that the Bayesian’s posterior eventually piles up on λ and places less and less weight on π? If so,
our formulation says π is inexplicable relative to λ . If not, our formulation says π is explicable
relative to λ . Hence, when θ ∗ ∈ supp(λ ), our notion of explicability with full attention essentially
amounts to assessing whether long-run Bayesian beliefs settle on the true parameter. While Defi-
nition 1 may seem like a convoluted way to present such a familiar concept, we show in Section 4
that it provides an interpretational advantage once we introduce channeled attention. In particular,
λ captures possibilities that a person might entertain at moments of reflection and doubt, but these
possibilities do not influence what data he collects prior to such reflection.
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As highlighted above, our notion of explicability is relative since it depends directly on the
alternative theory λ against which π is compared. To say a model π is inexplicable does not
simply mean outcomes are unlikely given π—in many models, any given outcome is unlikely.15

For instance, if a coin is believed to be fair and i.i.d., then a sequence of 200 heads in a row is just
as likely as any other sequence of 200 flips, including any with 100 heads and 100 tails. Yet we
think the person will doubt his model when he sees the former sequence but not the latter. Thus,
in order to rule the fair-coin hypothesis inexplicable, the person must additionally compare it with
an alternative model under which the coin is biased towards heads.

Specifying the alternative model λ is therefore a central feature of our explicability criterion.
While we generally allow for any λ , most of our analysis assumes λ is the correct theory we as
researchers think the agent ought to entertain. Focusing on this case of λ = π∗ both pins down
our analysis and most closely mirrors folk intuition regarding when people should get a clue.
Although we take λ to be the “true” model, we do not necessarily designate that λ is degenerate
on the realized parameter—λ can be probabilistic over the parameters, and thus can represent an
array of alternative possibilities against which a person compares his initial theory.16

Focusing on the case where λ = π∗ tilts the analysis in favor getting a clue: restricting attention
to discrete Θ, if π is explicable with respect to π∗, then π is explicable with respect to any light-
bulb λ ∈ ∆(Θ). At the same time, taking λ = π∗ gives a potentially misleading impression that if
a person discovers his model is wrong, then he necessarily abandons it in favor of the true model:
if π is inexplicable with respect to π∗, then it is inexplicable with respect to the infinite array of
models that explain reality better than π . The dynamics following a “light-bulb moment” where
π is deemed inexplicable—and specifying which model a person adopts after rejecting π—are
beyond the scope of our analysis.

Throughout the paper, we often simplify the notation in Definition 1 in three ways. First, when
it does not create confusion, we take it as understood that nature draws θ ∗ from π∗ and that prob-
abilistic statements are with respect to the true distribution conditional on θ ∗. This allows us to
drop θ ∗ from the presentation. Second, when we say that π is explicable or inexplicable without
reference to a particular light-bulb theory, we mean it with respect to λ = π∗. Third, and most
substantively, Assumption 1 implies that observations are independent of actions and hence that
explicability is independent of σ . Because of this, we typically drop σ from the discussion of

15In a related model, Ortoleva (2012) instead evokes the “absolute” likelihood of an outcome. The distinction
between the two approaches is obscured by his framework’s focus on a finite number of (non-stochastic) states.

16Whether λ is degenerate or not becomes relevant for explicability only when we violate our assumption that Θ is
finite. Suppose, for instance, that the person’s theory about the bias of a coin is uniform on [0,1] in a situation where
we believe there is real uncertainty over the bias. If the coin turns out to be biased 0.55 (say), we do not want the
person to deem his uncertain-prior model inexplicable merely because a dogmatic prior of 0.55 would have designated
the realized outcome as more likely. By contrast, in the more realistic scenario where we posit a true model in which
the coin is certainly unbiased, we are comfortable saying that the uncertain [0,1] theory is inexplicable.

14



explicability.17

The remainder of this section presents properties of explicable theories that serve as benchmarks
for assessing the impact of channeled attention in Section 4. While these properties hold more
generally, we restrict consideration to environments that are “stationary” and have rich enough
feedback for a rational agent to learn the true parameter.

Definition 2. The environment is stationary if Xt , Yt , and ut are independent of t and P(yt |xt ,ht ,θ)=

P(yt |xt ,θ) for all t ∈ {1,2, . . .}, yt ∈ Yt , xt ∈ Xt , ht ∈ Ht and θ ∈Θ.

When the environment is stationary, we denote the constant action space, outcome space, and
utility function by X ,Y , and u, respectively. In such settings, a misspecified model is explicable
under full attention if and only if it explains observations as well as the alternative model.18 Let
D(θ ∗‖λ ) ≡ minθ∈supp(λ )D(θ ∗‖θ), where D(θ ∗‖θ) is the Kullback-Leibler Divergence of P(·|θ)
from P(·|θ ∗), and define ∆D(θ ∗‖λ ,π) ≡ D(θ ∗‖λ )−D(θ ∗‖π) as the degree to which π better
explains observations than λ .19

Observation 1. Suppose Assumptions 1 and 2 hold, the environment is stationary, and D(θ ∗‖λ )
or D(θ ∗‖π) is finite.

1. Theory π is θ ∗-explicable with respect to λ if ∆D(θ ∗‖λ ,π) > 0 or ∆D(θ ∗‖λ ,π) = 0 for

θ ∗ ∈ supp(λ )∪ supp(π).

2. Theory π is θ ∗-inexplicable with respect to λ if ∆D(θ ∗‖λ ,π)< 0.

Observation 1, which reflects results known at least since Berk (1966), says that a theory π is
explicable with respect to λ if π explains observations better than λ and inexplicable if it does
worse. This observation has two immediate implications: (i) theory π is θ ∗-explicable with re-
spect to π∗ if and only if there exists some θ ∈ supp(π) that makes the same predictions over
observables as θ ∗, meaning P(yt |θ) = P(yt |θ ∗) for all yt ∈ Yt ; and (ii) any theory π that assigns
positive probability to θ ∗ ∈ supp(π∗) is explicable with respect to any λ ∈ ∆(Θ).

Observation 1 additionally suggests that, within environments with rich feedback, any explicable-
but-false theory generates no long-run welfare loss. Hence, with full attention, explicable models

17Note that Assumption 1 also tilts the analysis in favor of getting a clue, since it rules out insufficient or misguided
experimentation as potential barriers to learning.

18As with all of our results, proofs are provided in Appendix B.
19The Kullback-Leibler divergence is given by

D(θ ∗‖θ) = ∑
y∈Y

P(y|θ ∗) log
P(y|θ ∗)
P(y|θ)

. (1)
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do not continually generate costly mistakes in the environments we consider.20 As we show below,
this conclusion no longer holds with channeled attention.

4 Channeled Attention and Stable Equilibria

Because our baseline definition of inexplicability in Section 3 assumes full attention, “getting a
clue” under that criterion may stem from the person attending to and remembering things he finds
irrelevant. This section instead studies inexplicability when the person selectively notices data
based on his misspecified model π . As such, the person may ignore information his model deems
irrelevant for payoffs. For instance, in the medical example above, a person who thinks he knows
the likelihood of fast recovery without treatment need not attend to how quickly he (or others)
recover when untreated. If the person’s theory regards as useless precisely those data necessary to
discover his error, then he may never do so.

The first part of this section formalizes our model of channeled attention and defines how the
person’s theory π determines what he pays attention to. We then introduce the concept of atten-
tional explicability and consider when an “attentional strategy” is part of an attentionally stable

equilibrium given theory π; that is, when following the attentional strategy prevents the person
from learning π is false.

4.1 Channeled Attention

To model channeled attention, we assume the person notices and remembers coarse “signals” about
the history rather than its exact value. For each t = 1,2, . . . , let Nt denote a partition of the set of
histories, Ht . Following ht ∈Ht , the person recalls only the element of Nt containing ht , denoted by
nt(ht). We call nt(ht) the noticed history. As in the stylized “predictor neglect” example (Section
3.2.1), the person may ignore seemingly useless signals and record only whether outcomes are
high or low. In this case, nt(ht) contains all potential histories h̃t that have the same sequence of
resolutions as ht , but not necessarily the same sequence of signals as ht .

Figure 2, below, revisits the timeline of an individual period (Figure 1), and now includes the
timing of information coarsening that happens each round: prior to taking action xt , the person
summarizes all realized data into a “sufficient statistic” nt(ht) which he uses to guide xt .

A noticing strategy N is the full sequence of the person’s “noticing partitions”: N =(N1,N2, . . .).
This strategy specifies for each point in time what the person has noticed conditional on the true

20That said, explicable-but-false models may reduce welfare in richer environments. If the person grows convinced
of wrong parameters in one setting, he may naturally use them to make predictions in other environments where they
do worse than the true model.
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Figure 2: Timeline of events within period t, including the coarsening of past information.
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history. While we specify below how N depends on both the person’s preferences and model π ,
we first consider restrictions on the noticing strategy.

With channeled attention, it becomes crucial to specify what a person recalls about data that he
either did not notice in the first place or has subsequently forgotten. We limit our focus to noticing
strategies that are memory consistent: roughly speaking, once data has been ignored or forgotten,
it cannot be recovered.21

Definition 3. A noticing strategy N is memory consistent if for all t ∈ N and ht ∈ Ht , h̃t ∈ nt(ht)

implies (st+1,yt ,xt ; h̃t) ∈ nt+1((st+1,yt ,xt ;ht)) for all (st+1,yt ,xt) ∈ St+1×Yt×Xt .

Memory consistency does not say that the person notices all information he previously encoded.
Instead, a key feature of our framework entertains the possibility that people do not retain informa-
tion once they deem it no longer useful. Throughout the main text, we assume volitional recall: the
person can freely discard information he previously encoded once it is no longer decision relevant
under his misspecified model.

That said, there are situations where it seems plausible that data would be top of mind even
when a person no longer finds it useful—for instance, immediately following an action inspired by
a particular piece of data. To handle such scenarios, many of the proofs in Appendix B formally
consider how our results presented in the main text extend in the limiting situation of automatic

recall (as opposed to volitional recall assumed in the text) where a person continually notices
anything he previously noticed. (See Definition B.1 for a formal definition.) For example, if a
consumer considered a product’s price when deciding whether to buy it, then automatic recall says
that she always remembers this price. Although automatic recall is an extreme assumption, many

21Memory consistency also rules out convergence complications that arise when the person’s noticed history ex-
pands and contracts over time. While useful for such technical issues, this assumption does rule out some well-known
aspects of memory. For example, an environmental cue today may elicit associative memories which were not top of
mind yesterday (formalized in economics by, e.g., Mullainathan 2002 and Bordalo, Gennaioli, and Shleifer 2017).

17



of our results on when an error is attentionally stable continue to hold even if we impose it.22

We assume the person is aware that he selectively notices and recalls information. More for-
mally, define an attentional strategy as a pair φ = (N ,σ) such that (i) noticing strategy N is
memory consistent and (ii) for each period t, behavioral strategy σt : Nt → ∆(Xt) maps noticed
histories to actions. If the person observes noticed history nt , he uses his theory π and knowledge
of φ to weight the probability of each ht ∈ nt and updates accordingly. Specifically, the likelihood
of nt given θ conditional on φ is Pr(nt |θ ,φ) = ∑ht∈nt P(ht |θ ,φ) and the resulting posterior over θ

is

πt(θ) =
Pr(nt |θ ,φ)π(θ)

∑θ ′∈Θ Pr(nt |θ ′,φ)π(θ ′)
.

Our analysis implicitly assumes that the person recalls her prior π , her strategy φ , and the time
period t ∈ N.23

4.2 Sufficient Attentional Strategies

We assume attentional costs are negligible, and therefore an optimizing decision maker ignores
some piece of data only when he perceives it as useless for guiding future decisions. Accordingly,
we say his attentional strategy is “sufficient” with respect to his theory π if he filters out only
information that π deems irrelevant for decisions.

Definition 4. An attentional strategy φ = (N ,σ) is a sufficient attentional strategy (SAS) given

π if, under π , the person expects to do no worse by following φ than he would by following any
other attentional strategy φ̃ . Under Assumptions 1 and 2, sufficiency amounts to

max
x∈Xt

E(π,σ)[ut(x,y)|nt(ht)] = max
x∈Xt

E(π,σ)[ut(x,y)|ht ]

for all ht ∈ Ht that occur with positive probability under (π,σ).

Under a sufficient attentional strategy (SAS), the person believes that his expected payoff is in-
dependent of whether he optimizes using the coarsened history or the precise history. For instance,
ignoring signals in the stylized “predictor neglect” example (Section 3.2.1) is part of a SAS under
a theory in which signals do not correlate with outcomes. Additionally, given that we define a SAS
without reference to t, we implicitly assume it is dynamically consistent. However, it would be

22We conjecture that all our results carry over to a less extreme (and probably more realistic) form of automatic
recall where the decision maker can freely revisit any previously noticed data if he deems it relevant.

23Although we assume throughout the paper that the agent is aware of his channeled attention, we do not think
natural forms of naivete (e.g., as described in Schwartzstein 2014) would impact our analysis given our focus on
long-run questions.
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straightforward to extend our framework to handle dynamic inconsistencies.24

Our definition of a SAS does not mandate that a person ignores data he deems useless. However,
as a benchmark, we often consider the “minimal” case where all seemingly extraneous information
is ignored. Say that ˜N is coarser than N if for all t, Ñt is coarser than Nt and at least one of these
coarsenings is strict.

Definition 5. Given π , a SAS (N ,σ) is minimal if there does not exist another SAS that can be
obtained by coarsening N .

Minimal attentional strategies are perhaps most consistent with our interpretation that the person
ignores data due to small costs of attention. However, a minimal SAS also assumes a perhaps
implausible ability to ignore data, and we discuss in the conclusion how our framework extends to
situations where some data is impossible to ignore.

A fixed environment can give rise to multiple minimal sufficient attentional strategies, and the
particular one a person follows can dictate which long-run beliefs she comes to hold. To illustrate
the latter point, consider a person who thinks that each of M doctors make the same recommen-
dation given a fixed set of symptoms. There are thus M minimal SAS, each taking the following
form: the person follows the advice of Doctor m∈ {1, . . . ,M} and ignores all other doctors. If there
is in fact heterogeneity across doctors’ advice, the patient’s (seemingly inconsequential) choice of
who to follow will determine his long-run beliefs.

4.3 Attentional Stability and Measurability

When is a mistaken models stable in the sense that observations noticed while following a sufficient
attentional strategy are “explicable”? The following extends our baseline definition of explicability
to accommodate channeled attention.

Definition 6. Given true parameter θ ∗, theory π is θ ∗-attentionally inexplicable with respect to
λ and SAS φ = (N ,σ) if the Bayes Factor Pr(nt |π)/Pr(nt |λ ) converges to 0 in t with positive
probability when the person follows SAS φ . Otherwise, π is θ ∗- attentionally explicable with
respect to λ and φ . When the latter case holds relative to λ = π∗, we call φ an attentionally stable

equilibrium (ASE) given π .

Channeled attention limits when “Eureka moments” will happen. With full attention, a model π

is inexplicable if it seems excessively unlikely relative to the light-bulb model λ when all available

24To give an example of a dynamically inconsistent SAS, consider a person who has self-control problems but is
naive about them. He is at a restaurant and orders tiramisu, thinking this will be the last time he orders dessert. Because
he thinks he will go on a life-long diet starting tomorrow, he does not pay attention to the tiramisu’s quality. But when
tomorrow comes, he again wants to order dessert and wishes he could recall how much he liked the tiramisu.
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data is actively used to assess the relative likelihood of π versus λ . Our interpretation of inexplica-
bility under channeled attention differs in the following way: we ask when the seemingly-relevant
data under π alone will alert the person that his model is misspecified. We do not interpret the
agent as actively collecting data for the dedicated purpose of distinguishing π from λ . After all,
the agent sees no reason to question π .

Under this interpretation, potential “Eureka moments” happen after the person selectively at-
tends to the data. If at that point the selected data—which was noticed solely to make optimal
decisions given π—happens to make π seem implausible relative to some proposed alternative,
then we say π is attentionally inexplicable.25 Returning to the medical example (Section 2), even
when natural recovery rates are equal to those with treatment, a theory that treatment is superior is
attentionally explicable under a SAS that ignores natural recovery rates.

Before analyzing when a misspecified model is attentionally explicable, we first address a more
basic question: is the model “measurable”? Namely, is it such that a person never confronts
data that he thought was impossible? We say π is attentionally measurable with respect to SAS
φ = (N ,σ) if all finite noticed histories given φ that occur with positive probability under π∗ are
assigned positive probability under π .

Proposition 1. If φ = (N ,σ) is a minimal sufficient attentional strategy given π , then π is atten-

tionally measurable with respect to φ .

Proposition 1 shows that for any misspecified model π , there exists a sufficient way to filter the data
such that the person never notices an outcome he assumed impossible. In particular, this is true
whenever the person follows a minimal SAS. Intuitively, the person sees no benefit to distinguish
events he assigns zero probability from those he assigns positive probability. Hence, a minimal
noticing strategy is not fine tuned to notice when subjectively zero-probability events occur.

There are three basic points to take away from this result. First, surprising events do not nec-
essarily lead a person to get a clue because he may not look out for such events: while nothing is
more surprising than an event he thought impossible, these are precisely the events he assumes are
not worth looking out for. Second, whether a person is on the lookout depends on his theory, and
thus surprising events that a person’s theory anticipates are more likely to lead him to get a clue.

25More precisely, we rule π attentionally inexplicable if there is a positive probability that the selectively-noticed
data makes π seem implausible relative to λ . This probabilistic definition takes a stand on inexplicability in cases
where Pr(nt |π)/Pr(nt |λ ) converges to 0 under some infinite histories but not not others. To give a simple example,
suppose that a ball is drawn from an urn each day, and the balls from this urn always have the same color. Ex ante,
the urn may be one of three types—it may contain purely red, blue, or yellow balls. If the person’s erroneous theory π

posits that the urn only has two types—purely red or blue—then Pr(nt |π)/Pr(nt |λ ) may converge to 0 when facing a
yellow urn but not when facing a red or blue urn. As usual, our definition tilts the results in favor of classifying such
a model as attentionally inexplicable: if there is any chance that the noticed data wakes the person up, we deem π

attentionally inexplicable.
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Third, since an immeasurable event would surely lead a person with full attention to get a clue,
channeled attention modifies key comparative statics predicted by full attention.

While a person’s theory will be attentionally measurable if he follows a minimal SAS, it need
not be attentionally explicable. In the next section, we examine some applications that demon-
strate how attentional stability depends on the environment. We then discuss broader principles of
attentional stability in Section 6.

5 Applying the Framework to Some Well-Known Errors

5.1 Self Control

While some researchers (e.g., Ali 2011) argue that rational learning should correct a person’s
underestimation of her self-control problems, this application explores how channeled attention
enables a person to persistently make this error. In a canonical environment, we show that whether
the person wakes up depends on how uncertain she is initially about her self control—she need
not wake up when she is fully naive about her problem or even just dogmatic. It also depends on
how this uncertainty about her self control translates into uncertainty about behavior—she need not
wake up when she thinks that learning about her self-control problem wouldn’t change how she
behaves. This means that the person may wake up to her self-control problems in some situations
but not others—she won’t wake up if, under her model, she believes there is no benefit to learning
the extent of her self-control problems.

To study scenarios where a person decides whether to take an action with immediate cost and
delayed benefit, we frame the analysis around decisions attached to visiting the gym. At the start of
each period t, the person decides whether to buy a gym membership if she does not currently have
one and whether to visit the gym. A gym membership lasts for T periods (beginning the period
after purchase) and costs m (paid the period after purchase). Visiting the gym requires an active
membership. If the person goes to the gym on day t, then she also pays an immediate effort (or
opportunity) cost equal to ct—which she learns when period t begins—and earns benefit b > 0 in
the future. Costs ct are i.i.d. draws from U[0, c̄], where c̄ > b. If the person doesn’t go to the gym,
she incurs no effort cost or benefit. The timing is pictured in Figure 3.

Following Laibson (1997) and O’Donoghue and Rabin (1999, 2001), we consider a (β ,δ ) dis-
counter with δ = 1: in each period t, the person discounts any future costs or benefits by a factor
β ∈ [0,1). While the person acknowledges that she may discount future utility, we assume she
underestimates the likelihood that she will do so. The person believes that in any future period, she
will discount in one of two ways: with probability q she discounts according to β , and with prob-
ability 1−q she does not discount at all. In other words, the person thinks she’ll only be tempted
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Figure 3: Timeline of events beginning from any period t−1 in which the agent does not yet have
a membership.

PERIOD tPERIOD t−1 PERIOD t +1 ONWARD

Contract
offered

Agent buys
membership

Agent rejects
membership

Payoff: −m

Payoff: 0

Realize cost ct
and patience βt

Agent
attends

gym

Agent
avoids
gym

Payoff: −ct

Payoff: 0

Payoff: b

Payoff: 0

to avoid the gym on a given day with probability q, when in fact she is tempted with probability
1. Formally, she thinks βt fluctuates from day to day such that, for all t, βt = β with probability q

or βt = 1 with probability 1−q. The person’s priors over q are given by π . An important special
case, explored by e.g., Eliaz and Spiegler (2006), is where the person dogmatically believes in
some q̂.26 The person is sophisticated when q̂ = 1; fully naive when q̂ = 0; and partially naive
when q̂ ∈ (0,1).27

The person thinks prospectively that she should visit the gym on day t if and only if she has an
active membership and b > ct , but she in fact does so if and only if she has an active membership
and βtb > ct ⇐⇒ b > ct/βt . Naivete implies that the person misperceives the distribution of
βt—she thinks that βt will sometimes be 1. We assume the person can observe her effort cost (ct)
and her overall desire to avoid the gym (ct/βt) each period regardless of whether she purchases
the membership. Hence, with full attention, π is inexplicable: through her daily assessment of
whether the gym seems worthwhile, the person notices that βt never equals 1.

26Since Eliaz and Spiegler (2006) consider a two-period model, there are other multi-period generalizations con-
sistent with their formulation of partial naivete. For example, the person could think that, with probability q, she is a
type who always discounts future benefits by factor β or, with probability 1−q, is a type who always discounts future
benefits by factor 1. Under this generalization, the person would become sophisticated after a single period with full
attention. We instead consider a person who thinks β is not constant, and has the potential to fluctuate each day.

27An alternative formulation of partial naivete, proposed by O’Donoghue and Rabin (2001), considers an agent
who dogmatically believes that her self control is β̂ ∈ [β ,1]. Under that formulation, the person sees something she
thought was impossible every period (β is lower than she thought possible), so the O’Donoghue and Rabin (2001)
misspecification is immeasurable. Since the agent in our model has wide flexibility in how she encodes subjectively
impossible events, O’Donoghue and Rabin (2001) partial naivete is more likely to be attentionally explicable than
Eliaz and Spiegler (2006) partial naivete.
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With channeled attention, however, π may be part of an attentionally stable equilibrium. To
build intuition, first note that this is always the case when there is no gym membership cost (m =

0). In this case, deciding whether to visit the gym only requires her to notice whether her total
disinclination to visit the gym that day, ct/βt , exceeds b. She need not separately notice the values
of ct and βt . Furthermore, because she does not think there is anything payoff relevant to learn,
she need not remember past values of ct/βt or her past gym-going. So, when following a SAS, the
person need not realize that βt does not follow the distribution she thinks it should.

The analysis is more nuanced when the membership cost is positive (m > 0), since the person
then has an incentive to attend to information that helps her predict whether the membership is
worthwhile. For a given point belief q̂, the person desires the membership if

m < T
(
(1− q̂) ·E[b− c|b > c]Pr(b > c)+ q̂ ·E[b− c|βb > c]Pr(βb > c)

)
,

or, equivalently, if

m < T ·
(

b2

2c̄

)
· [(1− q̂)+ q̂β (2−β )] . (2)

That is, she buys the membership if she thinks its cost is lower than the option value of being able
to use the gym. This option value is high when perceived effort costs are low (i.e., low c̄) and
naivete is high (i.e., low q̂).

It is straightforward that the person may persistently “pay not to go to the gym” in an attention-
ally stable equilibrium: when inequality (2) holds for all q̂ ∈ supp(π), the person thinks member-
ship is worthwhile no matter what, and thus sees no need to track her behavior. The analysis is then
similar to the case where m = 0. (And it’s also similar if inequality (2) is reversed for all q̂ in the
support of π .) So, if the person is certain she has sufficient self control to make the membership
worthwhile, then she need not notice that she goes too little to justify the membership. Indeed,
there is suggestive evidence that people are not only overoptimistic in predicting how often they
will go to the gym, but also in estimating how often they went to the gym (Beshears et al. 2017).

When the person is initially unsure whether the membership is worthwhile, however, she may
wake up to the fact that she goes to the gym less often than she thought possible for a given c̄. The
next result provides a necessary and sufficient condition for no attentionally stable equilibrium to
exist.

Proposition 2. In this section’s environment, there is no attentionally stable equilibrium given the

person’s model π if and only if, under that model, she believes there is a benefit to learning about

the extent of her self-control problems. That is, if and only if there exists q̂, q̂′ ∈ supp(π) such that

inequality (2) holds for q̂ but not for q̂′.
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For intuition behind this result, first suppose there is q̂, q̂′ ∈ supp(π) such that inequality (2) holds
for q̂ but not for q̂′. The person thinks they need to attend to the fraction of times that βt = β in
order to distinguish between q̂ and q̂′. In the long run, the observed fraction will be inconsistent
with π , so π is attentionally inexplicable. If instead inequality (2) either holds for all q̂ ∈ supp(π)
or fails for all q̂ ∈ supp(π), then the person believes there is no benefit to learning about the extent
of her self-control problems and there is a SAS under which π is attentionally explicable.

In Section 6, we will generalize a few immediate implications of this result. First, dogmatic
beliefs about the environment hinder learning. In this application, the person need not wake up
to her self-control problem if she is dogmatic to begin with: she must first be uncertain about the
extent of her problem to have any incentive to notice its true severity. Second, uncertainty about
the optimal action paves the way to waking up. Uncertainty about one’s self-control problem leads
the person to wake up only in certain environments—only when the membership cost m is in a
range that uncertainty over q makes her uncertain about which action she should take. Finally,
whether a person wakes up is not tightly linked to the cost of her mistake—any such link depends
on whether the cost influences perceived uncertainty about the optimal action. For instance, the
person may fail to discover her self-control problem even when it is very costly (e.g., if she thinks
for sure her self control is sufficient to justify a membership), but may discover her problem when
it is costless in the long run (e.g., she may learn within her misspecified model that her self control
is bad enough to forgo a membership and then additionally notice that is worse than she thought
possible). Thus, the particular way that a mistake becomes potentially more costly (e.g., increasing
the membership fee) matters for whether such a change sparks the discovery of an error.

This application additionally suggests that a person may recognize the extent of his self control
problem in one situation and remain naive in another. This may shed light on why most of us have
experience using some commitment device in some situation, despite making few commitments
overall (Laibson 2015).

5.2 Neglecting Correlations

This section considers an agent who neglects the correlated nature of others’ advice (as in De-
Marzo, Vayanos, and Zwiebel 2003; Eyster and Rabin 2010; or Enke and Zimmermann 2017).
Each period, the agent encounters a problem that has a solution dependent on a binary state that
fluctuates from period to period. For instance, the state may be the optimal way to resolve a prob-
lem at work, and new problems crop up over time. Denote the state in period t by ωt ∈ {A,B},
where qA ∈ (0,1) denotes the prior probability that ωt = A. This prior probability captures a
person’s intuition about the optimal action. Each period t, the person receives signals from K in-
formation sources, denoted st = (s1

t , . . . ,s
K
t ) ∈ {A,B}t , that are potentially informative about ωt .
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These signals, for instance, may be colleagues’ advice on how to resolve a problem.
We examine situations where the agent learns how to use these signals for his decisions. For

example, a salesperson may encounter new clients each period and must decide how aggressive to
be. He takes into account customer-specific advice from his colleagues while initially being unsure
who gives good advice. Or a new professor teaches different lectures each day and learns over time
which colleagues give good advice on how to lead those classes.

We allow for the possibility that the agent does not always receive feedback about whether an
information source made a good or bad recommendation. (E.g., colleagues give advice about how
to teach a class, but it is sometimes hard to tell how the class went.) The outcome rt each round is
such that the person receives feedback (rt = ωt) with probability ρ ∈ [0,1] and does not (denoted
rt =∅) with probability 1−ρ . Hence, ρ is the frequency of feedback on the quality of the person’s
information sources.

The person’s objective is to take an action xt ∈ {A,B} that matches the state: ut = 1 if both
xt = ωt and rt = ωt , and ut = 0 otherwise. For example, xt is how the person resolves the problem
he faces on day t—this clearly pays off if he receives feedback that xt was the appropriate response.

The agent is initially uncertain about the quality of his information sources. We explore the
stability of a misspecified model that treats his information sources as independent. We let θ k ≡
Pr(sk

t = ωt |ωt) denote the precision of signals from source k. The overall parameter governing the
environment is θ = (θ 1, . . . ,θ K,θ K+1) ∈ (.5,1)K×{0,1}, where the final element θ K+1 ∈ {0,1}
parameterizes the correlation in information sources. We let θ K+1 = 0 denote the case where
the information sources are independent (conditional on ωt) and θ K+1 = 1 denote the specific
correlation structure introduced below, which for sake of exposition focuses on the case of two
sources of advice.

To fix ideas, consider a new employee who receives advice from two colleagues i ∈ {1,2} each
period. In truth, s1

t and s2
t are not independent conditional on ωt . Colleague 1 always communicates

her independent private information s1
t ∈ {A,B} with both the new employee and Colleague 2.

Colleague 2, however, simply repeats Colleague 1’s information to the new employee unless she
has perfect private information about ωt , which we suppose happens with probability ι ∈ [0,1].
That is, fixing ωt , s2

t = s1
t with probability 1− ι and s2

t = ωt with probability ι .
Correlation neglect (being dogmatic that θ K+1 = 0) can have sharp behavioral consequences.

For example, when θ 1 = .6, ι = .3, and qA = .7, then the employee goes against her intuition
(given her prior that A is optimal) only when both colleagues agree that she should take action B.
This is clearly suboptimal given the information structure, since in fact (s1 = A,s2 = B) reveals for
sure that ω = B, while ω = A is actually more likely following (s1 = B,s2 = B). The employee
should go against her intuition of taking action A only when her colleagues disagree about which
action is better, not when they agree that B is better: disagreement reveals that Colleague 2 has
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strong private information.
Will the new employee get a clue that his colleagues’ advice is correlated and avoid the mistake

above? With volitional recall, the answers are perhaps surprising: roughly, the person maintains
his false model if and only if he receives perfect feedback about his colleagues’ advice.

Proposition 3. Consider any misspecified model π that is non-doctrainaire about θ 1 and θ 2 but

puts probability 1 on θ 3 = 0 (independent signals). π is part of an attentionally stable equilibrium

if and only if ρ = 1 and ι > 0.

Since the agent wants to learn θ 1 and θ 2, he must track his colleagues’ advice.28 But the agent
need not track the precise ordered history, so he may ignore some data on how often the two
colleagues agree. The extent of this ignorance depends on the rate of feedback, ρ . With perfect
feedback (ρ = 1), a minimal SAS records only the number of times each colleague gives correct
advice. Since the employee need not notice the inexplicable rate at which the two colleagues agree
(i.e., the frequency with which s1

t = s2
t ), he can persist in believing their advice is independent.

With limited feedback (ρ < 1), however, a minimal SAS must additionally record how often the
two colleagues agree in periods without feedback. Although the employee never learns whether
his colleagues were right or wrong in such periods, their signals are still useful for updating. To
see why, consider the extreme case where the employee is confident that Colleague 1 typically
delivers high-quality advice: even without feedback on whether s1

t is correct, the mere fact that
Colleague 2 agrees with Colleague 1 would be good news about the quality of Colleague 2. As
this logic extends to less-extreme cases, ρ < 1 implies that the agent learns about θ 1 and θ 2 in part
by comparing the advice of the two colleagues. Such benchmarking requires the agent to notice a
rate of agreement inconsistent with independent signals, leading him to incidentally discover that
signals are in fact correlated.

In this environment, richer information (on the quality of advice) prevents the person from get-
ting a clue. The next section considers in more generality which combinations of errors and envi-
ronments create barriers to getting a clue.

28While non-doctrinaire priors violate our earlier assumption of a finite parameter space, they are not necessary
and are assumed only for sake of exposition. As the proof makes clear, we need only ensure that the agent has
incentive to learn (θ 1,θ 2), which can be achieved with a finite parameter space meeting the following conditions.
Consider a model π with supports over θ 1 and θ 2 that share common minimum and maximum values, denoted by

θ and θ , respectively, and define the sets QA ≡
[

θ
2

(1−θ)2 ,
θ

2

(1−θ)2

]
, QB ≡

[
(1−θ)2

θ
2 , (1−θ)2

θ
2

]
, QM ≡

[
θ(1−θ)

θ(1−θ)
, θ(1−θ)

θ(1−θ)

]
, and

Q ≡ QA∪QB∪QM . The result of Proposition 3 holds so long as π yields a joint distribution over (θ 1,θ 2) such that
(i) the supports of θ 1 and θ 2 both contain at least two elements and the true values of θ 1 and θ 2 = ι +(1− ι)θ 1; (ii)
(1−qA)/qA ∈Q; and (iii) uncertainty about θ 1 and θ 2 is independent under π .
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6 When Are Errors Attentionally Stable?

We now explore general factors that influence an error’s stability. We first show that is not simply
the cost of a mistake that determines when a person discovers an error. We then analyze what
features of misspecified models and environments do indeed force reality to intervene and induce
a person to wake up. In particular, we show that a person is less likely to discover a misspecified
model that neglects useful variables than a model that is either overly rich or merely miscalibrated.
Furthermore, uncertainty about the optimal action—and a need to pay careful attention to data in
order to implement this action—promotes the discovery of errors.

Throughout this section, we illustrate our results with the example of a manager who must
each period assign an employee to one of two tasks, xt ∈ {H,L}: “high importance” or “low
importance”. The manager assigns tasks based on his beliefs about the employee’s ability, θ ∈
[0,1]. We assume the employee’s output yt ∈ {0,1} is i.i.d. conditional on θ with P(yt = 1|θ) =
θ . That is, yt = 1 denotes a “successful” job in round t and θ is the employee’s success rate.
Suppressing the utility function determining this choice, the manager assigns the important task
in round t (i.e., xt = H) if and only if Et [θ ] ≥ k, where k ∈ [0,1] is some cutoff, and Et is the
manager’s expectation of competence based on his updated beliefs entering round t.29 The results
in this section will shed light, for example, on when the manager is likely to discover that π—his
view of the employee’s ability or the factors that predict his or her ability—is wrong.

6.1 The Discovery of an Error is Not About its Cost

Determining when a person wakes up to an error is not a simple function of the cost it imposes.
In particular: (i) for every misspecified model, there exists some environment where the error is
stable yet arbitrarily costly, and (ii) for many models, there exist other environments where the
error is not stable despite being costless.

Consider environments satisfying Assumption 1, which can be written in terms of two com-
ponents: the outcome environment, (×∞

t=1Yt ,Θ,P,π∗), describing possible distributions over out-
comes, and the choice environment, (×∞

t=1Xt ,×∞
t=1ut), describing the action space and utility func-

tion. Trivially, for every outcome environment and erroneous model, there exists some choice
environment in which the model is stable: in particular, if ut is independent of outcomes, the
person has no incentive to attend to data and his model is thus attentionally explicable.

29 For an example of payoffs that generate this decision rule, consider payoffs for x ∈ {H,L} given by θbx− (1−
θ)ψx for bH ≥ bL and ψH ≥ ψL. That is, the “high” importance task is associated with a greater net benefit of getting
things right. The manager then wants to assign task H if and only if

θ ≥ ψH −ψL

bH −bL +ψH −ψL
≡ k.
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More interestingly, for every erroneous model pi there is always a choice environment in which
π is both stable and costly, meaning that limiting behavior under a SAS given π is suboptimal
relative to limiting behavior under a SAS given the true model, π∗. The following definition more
formally describes our notion of a costly error.

Definition 7. Consider a misspecified model π and SAS φ = (N ,σ) given π . Let ūt(φ |ht) ≡
E(θ∗,φ)[ut(x,y)|ht ] denote expected utility in period t given the true parameter θ ∗, history ht , and
SAS φ . Let φ∗ be any SAS given π∗. The SAS φ is costless if |ūt(φ |ht)− ūt(φ

∗|ht)| → 0 almost
surely given θ ∗. When SAS φ is not costless it is costly. When φ is both costly and an attentionally
stable equilibrium, it is a costly attentionally stable equilibrium.

As a step toward showing that all errors can be stable and costly in some environment, we first
demonstrate the stability of “dogmatic models”—those that provide a sense of certainty about the
optimal action.

Lemma 1. Suppose Assumptions 1 and 2 hold. If with probability 1 under θ ∗ there exists some

t̃ ∈ N such that for all t > t̃ the optimal action given πt is independent of θ ∈ supp(πt), then there

exists an attentionally stable equilibrium (N ,σ) given π whether or not it is costly.

With channeled attention, a sense of certainty—even if it is misguided—hinders the discovery
of errors: if the person eventually believes there is no further data that would change his action,
then he sees no benefit from paying attention. In terms of our example, if the manager is confident
that the employee’s ability θ is very high, then he is certain about which action to take. This logic
extends to situations where the person is initially uncertain but believes outcomes will follow some
identifiable pattern. For instance, a manager who thinks an employee’s performance is constant
across situations may judge the worker based on a single observation and, by neglecting subsequent
performance, never learn that his theory of steady performance is perhaps wrong.

Lemma 1 is useful in establishing a key result of this section: given any model π that does
not entertain the true parameter and any outcome environment (×∞

t=1Yt ,Θ,P,π∗) that meets some
simplifying regularity conditions, there exists a choice environment (×∞

t=1Xt ,×∞
t=1ut) such that π

is attentionally explicable and costly.

Proposition 4. Consider any outcome environment (×∞
t=1Yt ,Θ,P,π∗) such that P(·|θ) 6= P(·|θ ′) if

θ 6= θ ′. For every π with θ ∗ /∈ supp(π), there exists a choice environment (×∞
t=1Xt ,×∞

t=1ut) and a

corresponding SAS φ such that φ is a costly attentionally stable equilibrium given π .

Intuitively: fixing the outcome environment (×∞
t=1Yt ,Θ,P,π∗), we can construct a choice envi-

ronment with binary actions each period, Xt = {H,L}, such that H is optimal for any θ ∈ supp(π)
but L is optimal for parameter θ ∗. The proof considers a utility function with two particular prop-
erties: (i) the person incurs a big penalty if he ever switches actions—so he’s effectively choosing
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between “always H” and “always L”—and (ii) “always H” yields a higher payoff in any period
where π provides a better fit of the empirical distribution than does π∗. When the person believes
θ ∗ is impossible, he thinks there is nothing payoff-relevant to learn because he is confident H is
optimal in the first period and, because of the switching penalty, he thinks he should never revise
his action. Hence, invoking Lemma 1, there is an attentionally stable equilibrium given π , and it is
clearly costly. While the proof constructs a context where the person is ex ante dogmatic about the
optimal action, many of our examples show that costly errors can remain attentionally stable even
with active updating about which action to take.

What is more (and in a sense obvious given our framework), the costly attentionally stable
equilibria identified in Proposition 4 can be arbitrarily costly to the decision maker. A person
fails to discover a costly mistake only when he wrongly deems valuable data entirely useless and
ignores it. Once deemed useless, the true value of this data—which determines the scale of the
person’s mistake—does not influence the decision to ignore it. That is, no matter how great the
true benefit of some data relative to the attentional cost of processing it, the decision maker may
continually ignore this data if his perceived benefit is sufficiently small.

Proposition 4 should be read as saying that the attentional stability of an error must be as-
sessed with reference to the choice environment, not that all errors tend to be stable. Indeed, some
errors are attentionally unstable across potentially large classes of choice environments. In par-
ticular, there are models π that are both stable and costly only when the choice environment is
non-stationary. Consider, for instance, the managerial example above assuming the manager earns
a stationary utility u(xt ,yt) that depends solely on the current task assignment and outcome. If
the manager wrongly believes the employee’s success rate θ has support {.25, .75} when in real-
ity θ ∗ = .5 (i.e., the manager believes the employee is either typically successful or unsuccessful,
when in fact her success is a coin flip), then this error is stable only when it is costless—any
(wrongheaded) attempt to distinguish θ = .25 from θ = .75 must alert the manager that the true
parameter has an intermediate value, θ ∗ = .5.30

While Proposition 4 implies that a costly error can persist in certain environments, the coun-
terpoint is often true as well: many errors will necessarily be discovered in certain environments
despite being costless. We demonstrate this for misspecified models that never treat truly possible
outcomes as impossible; that is, they assign zero probability only to events that are truly impossible

30For the error to be stable, the manager must think that he does not need to attend to the frequency of success
to determine his optimal decision (otherwise he’d incidentally learn that θ = .5). So, for the error to be stable,
the manager must believe that one of the tasks, say x = H, is weakly optimal for both θ = .25 and θ = .75. Op-
timality of x = H given θ = .25 implies .25u(H,1) + .75u(H,0) ≥ .25u(L,1) + .75u(L,0) and given θ = .75 it
implies .75u(H,1) + .25u(H,0) ≥ .75u(L,1) + .25u(L,0). Normalizing u(L,0) = 0, the conditions above require
u(H,1)+ u(H,0) ≥ u(L,1). But in order for this error to additionally be costly, L must be strictly optimal given the
true parameter θ ∗ = .5, which implies u(H,1)+u(H,0)< u(L,1). This contradicts the condition above necessary for
stability.
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under the correct model. More formally, we say that π∗ is absolutely continuous with respect to
π if for all t ∈ N and histories ht ∈ Ht , history ht occurs with probability zero under π only if it
occurs with probability zero under π∗.

Proposition 5. Consider a model π and any outcome environment (×∞
t=1Yt ,Θ,P,π∗) in which π is

inexplicable. If π∗ is absolutely continuous with respect to π but θ ∗ /∈ supp(π), then there exists

a choice environment (×∞
t=1Xt ,×∞

t=1ut) where (i) every SAS given π is costless, yet (ii) there exists

no attentionally stable equilibrium.

For sake of intuition, consider a choice environment where in each round t, the person earns
a payoff of 1 if she correctly repeats back the entire history ht , and earns −1 otherwise. If the
person places positive probability on all truly possible events, then he has incentive to actively
notice ht each round. In this case, any error is costless: if the person knows ht , he will always take
the optimal action despite holding a misspecified model. Furthermore, knowledge of ht forces the
person to wake up to any inexplicable error.

Propositions 4 and 5 together imply that, depending on the choice environment, a given error
might be discovered despite being costless or go unnoticed despite being extremely costly. That is,
waking up to an error is not tightly linked to its cost.

6.2 Coarse Models are More Stable than Overly-Rich Models

The discussion above highlights that the choice environment influences attentional stability, but
some errors are part of an attentionally stable equilibrium broadly irrespective of the decision
maker’s preferences and action space. These include, for instance, errors that say some truly
important distinctions or variables do not matter. In this section, we characterize errors that are
stable across choice environments meeting stationarity and Assumptions 1 and 2.

Definition 8. In a stationary environment that meets Assumptions 1 and 2, theory π is preference-

independent attentionally explicable (PIAE) given true parameter θ ∗ if for any action space X and
u : X×Y → R, there exists a θ ∗-attentionally stable equilibrium given π .

Below, we discuss specific errors that are PIAE. To reach that point, however, we first pro-
vide a more general characterization of when a model π satisfies PIAE, which depends on π’s
predicted probability distributions over outcomes. Given our stationarity assumption, yt is i.i.d.
conditional on θ with distribution P(·|θ). Let Y (θ) denote the support of P(·|θ) and let Y (π) ≡
∪θ∈supp(π)Y (θ). Concepts from probability theory regarding minimal sufficient statistics (e.g.,
Lehmann and Casella 1998) help us analyze when models are PIAE. Let

mπ(y) =
{

y′ ∈ Y (π)|P(y′|θ) = P(y|θ)h(y′,y) ∀ θ ∈ supp(π) and some h(y′,y)> 0
}
. (3)
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Intuitively, mπ(y) is a minimal sufficient statistic for updating beliefs about θ : mπ(y) lumps y′

together with y if and only if, under π , the person updates the same way upon noticing y′ as
she would after noticing y. To accommodate volitional recall, we analogously define minimal
sufficient statistics over histories yt = (yt−1,yt−2, . . . ,y1), which we denote by mπ(yt).31 Note that
mπt (y) could, in principle, vary in t: if P(y|θ) = 0 or 1 for some (y,θ) ∈ Y (π)× supp(π), then
the support of πt may differ from that of π . However, to reduce the number of cases, we assume
P(y|θ) ∈ (0,1) for all (y,θ) ∈ Y (π)× supp(π), which implies that mπt (y) is constant in t.

With these concepts in hand, the following result characterizes when theories are PIAE.

Lemma 2. Assume Assumptions 1 and 2 hold, and that the environment is stationary. Further

suppose P(y|θ) ∈ (0,1) ∀ (y,θ) ∈ Y (π)× supp(π). The theory π is PIAE given θ ∗ if and only if

there exists θ ∈ supp(π) such that with probability 1 the ratio

P(mπ(yt)|θ)
P(mπ(yt)|θ ∗)

(4)

is bounded away from zero.

The idea behind this result is simple: it is always sufficient and sometimes necessary for the person
to attend to all information helpful in updating beliefs about θ . Therefore, if noticing mπ(yt) does
not force the person to wake up, then there is no choice environment that will. On the other hand,
if noticing mπ(yt) does force the person to wake up, then we can surely find a choice environment
where noticing this data is necessary under any SAS.

Lemma 2 can be used to identify specific classes of models that are stable across choice envi-
ronments. One immediate corollary of Lemma 2 is that dogmatic errors (e.g., about ability or self-
control problems) are PIAE: when π is degenerate, then mπ(y)=Y (π) and mπ(yt)=Y (π)t−1—that
is, no data is distinguished, and hence (4) necessarily holds. The two lists that follow provide addi-
tional corollaries of Lemma 2 to further categorize when classes of models are PIAE. We discuss
this categorization in intuitive terms here, and relegate formal definitions and results to Appendix
A.

Roughly, the following two classes of models are PIAE:

31For an example of mπ(y) and mπ(yt), consider the manager’s theory about an employee’s success rate, θ ∈ [0,1].
He places some weight on the rate being θ ′ and some on θ ′′ 6= θ ′. In this case, mπ(0) = {0} and mπ(1) = {1},
since P(1|θ)/P(0|θ) = θ/(1−θ) depends on θ . Also, letting k(yt) denote the number of successes in yt , mπ(yt) =
{ỹt |k(ỹt) = k(yt)} since

P(ỹt |θ)
P(yt |θ)

=

(t−1
k̃

)
θ k̃(1−θ)t−1−k̃(t−1

k

)
θ k(1−θ)t−1−k

is independent of θ if and only if k̃ = k.
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1. “Censored” models that ignore possible outcomes: A censored model neglects some possi-
ble outcomes. Imagine the manager example with three outcomes: the employee’s perfor-
mance may be successful, mediocre, or poor, so Y = {−1,0,1}. A manager with a censored
model believes, for instance, that for all θ ∈ supp(π), the probability of P(y =−1|θ) = 0—
he thinks the employee is good enough to avoid poor performance—yet π is consistent with
the noticed frequency of mediocre and successful performances. In this case, the manager’s
attentional strategy could simply coarsen outcomes based on “successful” or “unsuccessful”
without further distinguishing poor from mediocre performance. So long as there exists a
θ ∈ supp(π) such that P(y = 0|θ) = P(y = 0|θ ∗)+P(y =−1|θ ∗), then the manager’s obser-
vations are entirely consistent with his theory. Generally, such “censored” models are PIAE:
the agent can simply ignore those outcomes he deems impossible.

2. Models that neglect predictive signals: These models treat a subset of signals as independent
of outcomes. For instance, an investor might, as in Malmendier and Shanthikumar (2007),
neglect the importance of analyst affiliation in interpreting investment advice. Alternatively,
consider the managerial example where the manager additionally receives a signal s ∈ {h, l}
each period that helps predict the employee’s productivity. In truth, P(yt = 1|st = h,θ) =

θ + ε and P(y = 1|s = l,θ) = θ − ε for some ε < min{θ ,1− θ}; the manager, however,
thinks P(yt = 1|st ,θ) = θ regardless of st . Such neglectful models are PIAE so long as they
are otherwise well calibrated (i.e., the manager can explain the frequency of outcomes).

We now describe three classes of models that are not PIAE, meaning they are prone to incidental
learning. These include models that are miscalibrated but emphasize the right distinctions and
those that emphasize truly unimportant distinctions or variables.

1. Uncertain models that correctly specify the set of outcomes but incorrectly specify their prob-

abilities: When the person is unsure of his optimal action, he will collect the data his model
deems necessary to learn. The amount of uncertainty he perceives—which is determined
by uncertainty in π and the sensitivity of P(·|θ) to θ—thus impacts the scope of attention
and, ultimately, the stability of his model. Specifically, if no two observations lead to the
same beliefs over parameters (what in the appendix we call the Varying Likelihood Ratio

Property, or VLRP), then the person finds it necessary to separately notice every outcome in
order to learn θ . When the agent has incentive to learn θ , he will thus notice that his model
is miscalibrated. For example, if the manager is mistakenly convinced that the employee has
a certain ability θ 6= θ ∗, then his mistake is PIAE. However, a mistaken theory that θ has
support {.25, .75} is not PIAE (as discussed above).

2. “Overly elaborate” models that anticipate too wide a range of outcomes: These models can
be viewed as a counterpoint to “censored” models. Consider again the extended managerial
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example with three outcomes, Y = {−1,0,1}. The manager’s model is overly elaborate if
P(y = −1|θ) > 0 for all θ ∈ supp(π) when in fact P(y = −1|θ ∗) = 0; that is, the manager
wrongly thinks the employee will sometimes be dismal when in reality her performance
always exceeds this overly-pessimistic lower bound. Such models are prone to discovery, so
long as the person has an incentive to track the frequency of the different outcomes. In this
case, the person will eventually notice that an impossible outcome fails to materialize.

3. “Over-fit” models that assume the set of predictive signals is wider than it truly is: These
models can be viewed as a counterpoint to those that neglect predictive signals. To illustrate,
consider again the employee example with signals, but suppose now P(yt = 1|st ,θ) = θ for
either st ∈{h, l}, meaning that the signals are truly useless. A manager with an over-fit model
treats these useless signals as informative: he believes, for instance, that P(yt = 1|st ,θ) =

θ +ε when st = h and P(yt = 1|st ,θ) = θ −ε when st = l. Such models are not PIAE when
there is uncertainty about how useful the signals are (e.g., the manager wants to determine
which employee characteristics predict success). In these contexts the person would record
the sequence of both signals and resolutions, which would ultimately prove his initial theory
false.

The following table summarizes the categorizations above:

Attentional stability dependent

on choice environment

Attentional stability independent

of choice environment

CENSORED X

PREDICTOR NEGLECT X

MISCALIBRATED WITH VLRP X

OVERLY ELABORATE X

OVER-FIT X

Overall, these results demonstrate a sense in which “overly coarse” models—those that ignore
relevant outcomes or predictive signals—have a greater tendency to be stable than “overly fine”
models that place importance on truly irrelevant outcomes or signals.

A simple intuition underlies this pattern: when a person thinks a variable does not matter, she
is certain about how much it matters—she thinks it does not matter at all. Conversely, when a
person thinks a variable does matter, she is often initially uncertain about its importance. It is this
uncertainty that enables incidental learning.

6.3 Uncertainty About the Optimal Action Aids the Discovery of Errors

We’ve seen that some errors are broadly attentionally stable independent of the choice environment
yet others are stable only in particular environments. In the latter case, which features of the choice
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environment promote the discovery of errors?
Again, the main organizing principle behind our results on waking up is the following: un-

certainty about the optimal action paves the way for incidental learning, while being dogmatic
creates a barrier. Thus, factors that are often intuited as promoting learning—increasing the stakes,
decreasing the cost of information gathering, simplifying the choice, etc.—may not help in our
framework (and may even backfire) depending on how they influence the person’s perceived un-
certainty about the optimal action.

We illustrate this idea through a binary choice example, where we characterize the impact of
raising the stakes on incidental learning. Consider a stochastic variant of the stylized choice task
from Section 3.2.2: the payoff from option x∈ {A,B} each round is random and (vA,vB) represents
the average benefit of each option. Specifically, choice xt ∈ {A,B} yields utility αyx

t − cx, where
yx

t are i.i.d. with Pr(yx
t = 1) = vx. The person initially has non-degenerate yet misspecified priors

π about parameters (vA,vB), but he can costlessly observe feedback (yA
t ,y

B
t ) each period. Hence,

the person must keep track of outcomes if he cares to learn (vA,vB).
For example, each period a manager must assign one of two workers to the high-importance task

and the other to the low importance task. Here, α parameterizes the stakes of the task assignment
(the gravity of assigning the better worker to the more important task) and c parameterizes how
much the manager has to compensate the worker to engage in the high-importance task. The
manager may have to compensate one worker more than the other, cA 6= cB, when, for instance,
one has better credentials.32

What the person attends to and ultimately chooses will depend on both the “stakes” α and his
prior π over (vA,vB). Let vx and v̄x denote the minimum and maximum value of vx in the support
of π , respectively.

Definition 9. Let x,x′ ∈ X . Option x is perceived to dominate x′ in terms of gross benefit if vx > vx′ .

If, for instance, A is perceived to dominate B, then the support of the marginal over vA, supp(πA),
lies strictly above that of vB: the lowest conceivable expected benefit of A exceeds the highest

32In the notation of Footnote 29, choosing worker x = A for the high-importance task and B for the low-importance
task yields utility

θAbH − (1−θA)ψH − cA +θBbL− (1−θB)bL,

while choosing x = B for the high-importance task and A for the low-importance task yields utility

θBbH − (1−θB)ψH − cB +θAbL− (1−θA)bL.

The manager is better off choosing x = A for the high-importance task whenever

θA · [bH −bL +ψH −ψL]− cA > θB · [bH −bL +ψH −ψL]− cB.

So, in this example, vx = θx and α = [bH −bL +ψH −ψL].
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such benefit of B. Put differently, if the two options cost the same, the person believes that A is
(on average) certainly the right choice. The case where neither option is perceived to dominate
the other is equivalent to assuming the supports of vA and vB overlap; that is, co(supp(πA))∩
co(supp(πB)) has positive measure. In this case, even if the two options cost the same, the person
is still uncertain about the right choice.

We now derive long-run beliefs and behavior for the case where option A costs more than B:
cA > cB ≥ 0. Whether the person discovers his error will depend on the stakes and on whether
option A is perceived to dominate option B.

Proposition 6. Consider the stylized choice task above and define the constants α ≡ cA−cB
vA−vB

and

α ≡ cA−cB
vA−vB

.

1. Suppose that neither option is perceived to dominate the other. In this case, increasing α

promotes incidental learning:

(a) If α < α , then any minimal SAS is such that for all t ∈ N, the agent ignores (yA
t ,y

B
t )

and chooses xt = B. Beliefs remain at prior π .

(b) If α > α , then any minimal SAS is such that for all t ∈ N, the person must attend to

(yA
t ,y

B
t ). If (v∗A,v

∗
B) ∈ supp(π), then beliefs concentrate on (v∗A,v

∗
B). Otherwise, there is

no attentionally stable equilibrium.

2. Suppose A is perceived to dominate B. In this case, increasing α has a non-monotonic impact

on incidental learning—increasing α to intermediate levels promotes incidental learning,

while increasing α to high levels creates a barrier to incidental learning:

(a) If α < α , then the minimal SAS is such that for all t ∈ N, the person ignores (yA
t ,y

B
t )

and chooses xt = B. Beliefs remain at prior π .

(b) If α ∈ (α,α), then any minimal SAS is such that for all t ∈ N, the agent must attend to

(yA
t ,y

B
t ). If (v∗A,v

∗
B) ∈ supp(π), then beliefs concentrate on (v∗A,v

∗
B). Otherwise, there is

no attentionally stable equilibrium.

(c) If α > α , then any minimal SAS is such that for all t ∈ N, the agent ignores (yA
t ,y

B
t )

and chooses xt = A. Beliefs remain at prior π .

3. Suppose B is perceived to dominate A. Then α has no impact on incidental learning. For

all α > 0, the minimal SAS is such that for all t ∈ N, the agent ignores (yA
t ,y

B
t ) and chooses

xt = B. Beliefs remain at prior π .
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Comparing the first two cases reveals an interesting non-monotonic relationship between stakes
and attention. In case 1, where the person is ex ante uncertain which option has the higher benefit
(e.g., choosing between two workers with similar credentials), his attention is monotonic in the
extent to which he cares about this benefit, α . With a higher α (e.g., more important tasks), he
is more apt to attend to (vA,vB) to guide his decisions. By contrast, in case 2 where the person
is (subjectively) certain which option has the higher benefit (e.g., choosing between two workers
where one has better credentials than the other), his attention is non-monotonic. For intermediate
α , the person keeps track of outcomes to determine if the supposedly high-benefit option (A) is
worth the higher cost. This data would lead the person to “incidentally” learn that B is optimal and
hence that his prior theory was false. However, for high values of α , the person is convinced that
the benefit of A is worthwhile no matter its exact value, and thus ignores feedback and wrongly
sticks with A.33 This result contrasts with the intuition that the more one cares about a dimension,
the more likely she is to correctly learn about it.

6.4 Ability to Bypass Detailed Attention Hinders the Discovery of Errors

Environments that require careful attention to historical data in order to implement the optimal ac-
tion naturally promote the discovery of errors. Our next result emphasizes that attentional stability
is not about the limited availability of data per se that may arise from channeled attention, but
rather a failure to notice the right features of the data. Perhaps surprisingly, any attentionally stable
error will remain stable if we grant the agent access to a complete archive of past outcomes. That
is, an agent who can always go back and look at all past data (e.g., it is written down somewhere)
still need not get a clue.

Proposition 7. Consider any environment Γ≡ (Θ,×∞
t=0Xt ,×∞

t=0Yt ,×∞
t=0ut ,P,π∗) that satisfies As-

sumptions 1 and 2, and consider a modified environment identical to Γ aside from allowing the

person access to the full history each period: in the modified environment, the person receives

signals s̃t = (st ,ht) for all t = 1,2, . . . , where st follows the signal structure of Γ and ht is the

history up to period t. If a model π is attentionally stable in the original environment Γ, then it is

attentionally stable in the modified environment.

To provide intuition, suppose φ is an ASE given π in an environment where the history is not
exogenously archived. If π is not attentionally stable when the person can additionally access the
history prior to any decision, then there must exist information in the history that he believes would
improve his decision beyond the data he gathered following φ . But this contradicts the assumption

33The logic above suggests, for example, that overoptimistic models of an investment’s returns may go uncorrected
by investors with low enough risk aversion that they think investing is necessarily optimal. However, they would be
discovered and corrected by more discerning, risk-averse investors.
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that φ is sufficient in the first place: any sufficient attentional strategy extracts all seemingly useful
data from the history.

The following proposition helps strengthen the result above:

Proposition 8. Consider any environment Γ≡ (Θ,×∞
t=0Xt ,×∞

t=0Yt ,×∞
t=0ut ,P,π∗) that satisfies As-

sumptions 1 and 2, and consider the modification of this environment described in Proposition

7. There exists a minimal SAS φ in the modified environment where in each period t, the person

notices the optimal action x∗t ∈ Xt given ht and π and nothing more.

Given the SAS in Proposition 8, attentional explicability boils down to the existence of θ ∈ supp(π)
such that

P(x∗t |θ)
P(x∗t |θ ∗)

(5)

is bounded away from zero, where x∗t is the optimal action in period t conditional on ht and π . Thus,
so long as the optimal action with full attention does not grow excessively unlikely under π relative
to θ ∗, φ is an attentionally stable equilibrium when ht is always available. While Proposition 7
shows that continual access to ht makes the discovery of errors weakly less likely (relative to
environments without it), Proposition 8 suggests that often this access makes the discovery strictly

less likely.
In other words, increasing the availability of historical data decreases the propensity to discover

errors. Access to the history limits the data an agent must notice over time. Indeed, when ht is
available each round, a minimal SAS requires the person to simply query the history each period
asking “what action should I take today?” It is then sufficient to notice this recommended action
and nothing more (including actions previously taken). However, knowing solely today’s optimal
action is typically not sufficient to reveal a model’s misspecification: one must additionally notice
details of the outcomes leading to that action.

To illustrate, consider the managerial example from the start of Section 6 where the manager
optimally assigns the “high” task on day t if and only he currently believes the worker’s success
rate, θ , exceeds 50%. Suppose the manager is overly pessimistic about the worker and his mis-
specified model puts zero weight on the true success rate, θ ∗. Must the manager discover this
mistake? The answer is no if the worker’s outcomes are recorded in a database. In this case, the
manager can simply follow an algorithm that recommends the optimal action each round without
attending to the raw data itself.34 While following such an algorithm, the manager notices only
the optimal assignment at each point in time, and this assignment provides but a rough sense of
how often the worker has been successful (e.g., only whether she’s been successful more than 50%

34Such an “algorithm” would recommend the optimal task each period based on the frequency of past success. In
the example above, the algorithm recommends the “important” task on date t if and only if the success rate up to t
exceeds 50%.
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percent of the time). This is not enough to discover that θ ∗ /∈ supp(π)—to do so, he must further
notice the worker’s precise success rate over time. Yet when ht is always available, the manager
has no incentive to engage with this seemingly superfluous data since the “algorithm” approach
seems perfectly sufficient.

These incentives change when ht is not always available . If the manager can no longer query a
database to derive the optimal action, then he must notice and remember the worker’s success rate
himself. In this case, tracking the history to update about θ could incidentally lead the manager to
discover his mistake—eventually noticing a success rate inconsistent with any θ ∈ supp(π).

This highlights a sense in which incidental learning comes from a discrepancy in the data nec-
essary to make an optimal decision and that necessary to precisely learn parameters. Providing
access to data that pinpoints the current optimal action (e.g., by writing things down or delegating
tasks) allows the decision maker to bypass other details required for belief updating and hence
limits the scope for incidental learning.35

7 Discussion of Potential Limitations and Further Applications

This paper develops a framework for assessing when people “get a clue”, emphasizing a funda-
mental barrier to correcting errors: it often requires that people pay attention to, and remember,
data they deem irrelevant. We use this framework to partially characterize when people are more or
less likely to discover their mistakes, and to investigate the stability of common erroneous beliefs
and psychological biases.

7.1 Potential Limitations

Many of our assumptions about the environment stack the deck in favor of getting a clue: (i)
vanishingly small costs of attention, (ii) repetitive choice contexts that provide sufficient data to
identify the true model, and (iii) sufficient patience on behalf of the decision maker to record data
that may be useful at any point in the future. Our attentional stability criterion can in some sense
be thought of as a ”stress test”: if a person does not discover his erroneous beliefs even in repetitive
environments where attention is cheap, they are unlikely to do so in other settings.

However, we simultaneously focus on erroneous models that put zero weight on the true parame-
ter. This, of course, impedes getting a clue. We take this focus to accommodate our assumption that
attentional costs are negligible, making our results independent of details regarding the attentional

35Of course, our analysis abstracts from realistic attentional and memory constraints and the associated benefits of
not having to rely on one’s memory to access data. Our analysis also abstracts from what happens following light-bulb
moments—that is, what a person comes to believe after concluding that π is false. Such dynamics will depend heavily
on whether a person is able to revisit data he did not notice originally.
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cost function: if the person puts positive weight on the true parameter θ ∗ and faces no attentional
costs, he will always learn θ ∗ whenever he has incentive to do so. But with non-negligible costs of
attention, the person need not learn θ ∗ even if he assigns it positive weight, so long as that weight
is small relative to the cost of attention.

Our framework abstracts away from factors beyond channeled attention that could hinder learn-
ing. We assume the agent processes information in a fully Bayesian way given his priors. Hence,
psychological biases such as confirmation bias or motivated misreading of information do not play
a role in our analysis. Such factors surely contribute to the persistence of some erroneous beliefs,
yet, by neutralizing them, our framework demonstrates the extent to which channeled attention
itself could prevent the discovery of errors.

An additional limitation inheres in our ambition to provide a sharp framework that we and others
can broadly apply: our approach ignores non-instrumental factors in determining what draws atten-
tion. Especially when we focus on minimal attentional strategies, our framework permits agents
to ignore non-instrumental data that they might, in reality, obviously have to notice. While one
could embed assumptions about what a person automatically notices as a primitive, our general
framework leaves such assumptions to be imposed on an application-by-application basis.

One final feature of our framework—the extent to which agents correct their world view fol-
lowing a “light-bulb moment”—warrants further discussion. Again, our framework is meant to be
applied once a misspecified model is provided as a primitive, and we rely on empirical literature in
both psychology and economics to suggest these primitives. However, this literature is often silent
on whether a particular error is “local” or “global”; that is, if a person must correct an error in one
context if he corrects it in another. It is unclear, for example, if a person naive about his self-control
problem has varying degrees of naivete depending on the context (e.g., spending vs. exercise) or
instead applies the same misspecified model of his self control across all inter-temporal decision
problems. In practice, to apply the model consistently (and in a way we think is broadly realistic)
we assume that awareness of errors is local. Under this assumption, a person may discover his
mistake in one context, but continue to make that same mistake in other contexts. Such a “local
learning” assumption can limit or facilitate waking up. Of course, our framework accommodates
alternative assumptions on the scope of learning.

7.2 Further Applications

As described in Section 6.4, environments that require the agent to keep track of historical data
aid the discovery of errors. Channeled attention may therefore impose a hidden cost of delegation
in settings where a decision maker relies on others to first examine the data and then accordingly
recommend actions: if the decision maker finds it sufficient to attend solely to recommended
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actions, she may fail to notice errors that—in order to be discovered—require the decision maker
to further attend to details of the raw data.

To illustrate, consider a variant of the managerial example where a manager must decide each
period whether to assign a worker to an easy, moderate, or elite task. The manager thinks for sure
the worker should be assigned the easy or moderate task when in fact he should be assigned the
elite task. Will the manager get a clue? Not necessarily if she delegates this assignment task to an
outside agent: in this case, following the logic of Proposition 8, the manager will never notice that
the worker performs better than expected since she does not track the worker’s performance herself.
If additionally the manager faces costs and benefits from delegation—e.g., the agent can acquire
more precise signals about the worker but requires a fixed payment to do so—then the manager is
likely to delegate those tasks with higher stakes. Thus, increasing the stakes is likely to (i) increase
the propensity that a manager delegates the task, (ii) increase the accuracy of decisions within
the misspecified model, π , and (iii) reduce the likelihood that the manager discovers π is wrong.
Delegation improves decisions within a paradigm, but prevents getting a clue when paradigms are
incorrect.

Our framework may also shed light on types of effective persuasion—and on how policymakers
and researchers might go about debiasing those who are making errors. If the goal is to provide data
to convince a person that his model π is wrong, our theory highlights the importance of providing
data that is relevant within that model. For instance, making it easier to track gym attendance for a
person who is naive about his self-control problems may not help him recognize his mistake if he
is convinced he goes enough to justify a membership. While many researchers find that debiasing
people is particularly difficult (e.g., Soll, Milkman, and Payne 2014), the difficulty might partially
lie in the type of information debiasing campaigns choose to provide: selecting information based
solely on how much it would move people’s beliefs if it were processed may be far less effective
than targeting information that seems relevant given their biased beliefs.
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KŐSZEGI, B. AND A. SZEIDL (2014): “A model of focusing in economic choice.” The Quarterly
Journal of Economics, 128(1), 53–104.

LAIBSON, D. (1997): “Golden Eggs and Hyperbolic Discounting.” Quarterly Journal of Eco-
nomics, 112(2): 443–477.

LAIBSON, D. (2015): “Why Don’t Present-Biased Agents Make Commitments?” American
Economic Review Papers and Proceedings, 105(5): 267-272.

LEHMANN, E., AND G. CASELLA (1998): Theory of Point Estimation, Springer New York.

LOEWENSTEIN, G., T. O’DONOGHUE, AND M. RABIN (2003): “Projection Bias in Predicting
Future Utility.” Quarterly Journal of Economics, 118(4), 1209–1248.
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A Preference-Independent Attentional Explicability

The following propositions are essentially corollaries of Lemma 2 and formalize results described
in Section 6.2 on when models are PIAE. See the main text for intuitive descriptions of these results
and Appendix B for proofs.

Following the presentation in the main text, we first consider the two classes of models that are
PIAE.
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1. “Censored” models that ignore possible outcomes. We formally define “censored models”
as follows:

Definition A. 1. Model π is censored if Y (π) ⊂ Y (θ ∗) and there exists θ ∈ supp(π) such
that for all y ∈ Y (θ), P(mπ(y)|θ) = P(mπ(y)|y ∈ Y (θ),θ ∗).

Proposition A.1. Suppose the assumptions underlying Lemma 2 hold. If π is censored, then

π is PIAE.

Note that the assumption that a censored model correctly explains anticipated outcomes, i.e.,
for all y ∈Y (θ), P(mπ(y)|θ) = P(mπ(y)|y ∈Y (θ),θ ∗), is stronger than necessary for PIAE.
This additional assumption ensures that π is additionally PIAE under automatic recall. Thus,
Y (π)⊂ Y (θ ∗) is enough to imply that π is PIAE.

2. Models that neglect predictive signals. We formally define models with “predictor neglect”
as follows:

Definition A. 2. Consider environments where yt = (rt ,s1
t , . . . ,s

K
t ) in each round, and for all

θ ∈ supp(π)∪{θ ∗}, P(st ,rt |θ) = P(rt |st ,θ)P(st) where st ≡ (s1
t , . . . ,s

K
t ). That is, the person

may be uncertain about how s predicts r, but is certain about the frequency of s. Model π

exhibits predictor neglect if there exists J ∈ {0, . . . ,K− 1} such that for all θ ∈ supp(π),
P(rt |st ,θ) is independent of (sJ+1

t , . . . ,sK
t ).

Proposition A.2. Suppose the assumptions underlying Lemma 2 hold. If π exhibits predictor

neglect and there exists some θ ∈ supp(π) such that P(rt |s1
t , . . . ,s

J,θ) = P(rt |s1
t , . . . ,s

J,θ ∗)

for all possible (r,s1, . . . ,sJ) under θ ∗, then π is PIAE.

Intuitively, the person feels free to ignore or discard any information on the “neglected”
signals (sJ+1, . . . ,sK). Therefore, so long as there exists some θ that can explain the joint
distribution over (r,s1, . . . ,sJ), the model is PIAE.

We next consider the three classes of models that are not PIAE.

1. Uncertain models that correctly specify the set of outcomes but incorrectly specify their

probabilities. Sufficient uncertainty induces incidental learning when the misspecified the-
ory correctly predicts which outcomes are possible but incorrectly specifies the probabilities
of those outcomes. The next definition describes uncertain environments where no two ob-
servations lead to the same beliefs over parameters.
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Definition A. 3. For any π , we say the family of distributions {P(·|θ)}θ∈supp(π)∪{θ∗} satisfies
the Varying Likelihood Ratio Property (VLRP) if for all y,y′ ∈Y (π) and all θ ,θ ′ ∈ supp(π)∪
{θ ∗}, P(y|θ)

P(y′|θ) =
P(y|θ ′)
P(y′|θ ′) if and only if y = y′ or θ = θ ′.36

Whenever supp(π) contains at least two elements, VLRP implies that the person finds it
necessary to separately notice every outcome in order to learn θ—that is, each mπ(y) is a
singleton.

Proposition A.3. Suppose the assumptions underlying Lemma 2 hold and, in addition, VLRP

holds with Y (π) = Y (θ ∗). If supp(π) has at least two elements and θ ∗ /∈ supp(π), then π is

not PIAE.

2. “Overly elaborate” models that anticipate too wide a range of outcomes. We formally define
overly-elaborate models as follows:

Definition A. 4. Model π is overly elaborate if Y (π)⊃Y (θ ∗) and there exists y∈Y (π) such
that mπ(y)∩Y (θ ∗) =∅.

Proposition A.4. Suppose the assumptions underlying Lemma 2 hold. If π is overly elabo-

rate, then π is not PIAE.

3. “Over-fit” models that assume the set of predictive signals is wider than it truly is. We
provide a definition of “over-fit” models within the same class of environments where we
considered predictor neglect, above. Over-fit models can be seen as a counterpoint to those
with predictor neglect:

Definition A. 5. Consider the environment introduced before Proposition A.2, above: in
each round, yt = (rt ,s1

t , . . . ,s
K
t ) and for all θ ∈ supp(π)∪{θ ∗}, P(st ,rt |θ) = P(rt |st ,θ)P(st)

where st ≡ (s1
t , . . . ,s

K
t ). Model π is over-fit if it has the following properties:

(a) There exists J ∈{0, . . . ,K−1} such that in truth P(rt |st ,θ
∗) is independent of (sJ+1

t , . . . ,sK
t ).

That is, for all s, s̃∈ S such that (s1, . . . ,sJ)= (s̃1, . . . , s̃J), (sJ+1, . . . ,sK) 6=(s̃J+1, . . . , s̃K),
P(r|s,θ ∗) = P(r|s̃,θ ∗).

(b) For all θ ∈ supp(π), P(rt |st ,θ) depends on both (s1
t , . . . ,s

J
t ) and (sJ+1

t , . . . ,sK
t ). That is,

for all s, s̃ ∈ S such that s 6= s̃, P(r|s,θ ∗) 6= P(r|s̃,θ ∗).
36The VLRP condition is a generalization of the more familiar monotone likelihood ratio property (MLRP), as it

does not require supp(π)∪{θ ∗} to be ordered. Of course, VLRP holds for any family of distributions that satisfy
(strict) MLRP.
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(c) Signals (sJ+1, . . . ,sK) are useful for updating under model π . That is, there exist
s, s̃ ∈ S such that (s1, . . . ,sJ) = (s̃1, . . . , s̃J), (sJ+1, . . . ,sK) 6= (s̃J+1, . . . , s̃K), and (r, s̃) /∈
mπ((r,s)) for some resolution r where (r,s),(r, s̃) ∈ Y (π).

To summarize, over-fit models are certain that some useless signals help predict outcomes
(properties 1 and 2), yet exhibit some uncertainty about the extent to which they help (prop-
erty 3).

Proposition A.5. Suppose the assumptions underlying Lemma 2 hold. If π is over-fit, then

π is not PIAE.

Intuitively, there exist choice environments where the person seeks to learn the extent to
which signals (sJ+1, . . . ,sK) predict outcomes, and attending to these signals would eventu-
ally prove π false.

B Proofs (Preliminary)

Some proofs consider how results would change or extend with automatic recall.

Definition B.1. A noticing strategy N satisfies automatic recall (AR) if for all t ∈ N and ht ∈ Ht ,
h̃t /∈ nt(ht) implies that (s̃t+1, ỹt , x̃t ; h̃t) /∈ nt+1((st+1,yt ,xt ;ht)) for all (st+1,yt ,xt),(s̃t+1, ỹt , x̃t) ∈
St+1×Yt×Xt .

Automatic recall requires the person to distinguish the continuations of any two histories that were
previously distinguished.

The following lemma will be useful in establishing explicability in many of the proofs to follow.

Lemma B.1. Assume Assumptions 1 and 2 hold, and that the environment is stationary. Enumerate

Y arbitrarily by Y = {y1, . . . ,yN} and suppose the true parameter is θ ∗. For any θ ,θ ′ ∈Θ, define

Z̄(θ ,θ ′|θ ∗)≡
N

∏
n=1

(
P(yn|θ)
P(yn|θ ′)

)P(yn|θ∗)
. (B.1)

1. If Z̄(θ ,θ ′|θ ∗)< 1, then the likelihood ratio P(yt |θ)/P(yt |θ ′) a.s.−→ 0.

2. If Z̄(θ ,θ ′|θ ∗)> 1, then P(yt |θ)/P(yt |θ ′) a.s.−→ ∞.

3. If Z̄(θ ,θ ′|θ ∗) = 1 and θ or θ ′ equals θ ∗, then P(yt |θ)/P(yt |θ ′) a.s.−→ 1.
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Proof. For any yt ∈ Y t , let kn(yt) be the count of outcomes yτ from yt such that yτ = yn. Then

P(yt |θ)
P(yt |θ ∗)

=
∏

N
n=1 P(yn|θ)kn(yt)

∏
N
n=1 P(yn|θ ∗)kn(yt)

=

(
∏

N
n=1 P(yn|θ)kn(yt)/t

∏
N
n=1 P(yn|θ ∗)kn(yt)/t

)t

= (Zt)
t , (B.2)

where

Zt ≡
N

∏
n=1

(
P(yn|θ)
P(yn|θ ∗)

)kn(yt)/t

. (B.3)

If Z̄(θ ,θ ′|θ ∗)< 1, then there exists Z̃ ∈
(
Z̄(θ ,θ ′|θ ∗),1

)
such that(

Zt

Z̃

)t
a.s.−→ 0 (B.4)

by the strong law of large numbers. Property (B.4) implies that (Zt)
t a.s.−→ 0 since Z̃t a.s.−→ 0. Simi-

larly, if Z̄(θ ,θ ′|θ ∗)> 1, then there exists Z̃ ∈
(
1, Z̄(θ ,θ ′|θ ∗)

)
such that(

Zt

Z̃

)t
a.s.−→ ∞ (B.5)

by the strong law of large numbers. Property (B.5) implies that (Zt)
t a.s.−→∞ since Z̃t a.s.−→∞. Finally,

if Z̄(θ ,θ ′|θ ∗) = 1 and θ or θ ′ equals θ ∗, then P(·|θ) = P(·|θ ′) by Gibb’s inequality. This implies
that Zt = 1 for all t and thus P(yt |θ)/P(yt |θ ′) = 1 for all t. �

Remark 1. Note that ln(Z̄(θ ,θ ′|θ ∗)) = D(θ ∗‖θ ′)−D(θ ∗‖θ), where D is the KL divergence
defined in Equation 1. Hence, the three conditions of Lemma B.1 are equivalent to (i) D(θ ∗‖θ ′)<
D(θ ∗‖θ), (ii) D(θ ∗‖θ ′)> D(θ ∗‖θ), and (iii) D(θ ∗‖θ ′) = D(θ ∗‖θ) and θ or θ ′ equals θ ∗.

Proof of Observation 1

Proof. Supposing D(θ ∗‖λ ) and D(θ ∗‖π) are finite (the case where one is infinite is obvious),
Pr(ht |π)> 0 and Pr(ht |λ )> 0 for all ht in the support of P(·|θ ∗). Now letting
Θmin

π = argmin
θ̃∈supp(π)D(θ ∗‖θ̃) and Θmin

λ
= argmin

θ̃∈supp(λ )D(θ ∗‖θ̃), expand

Pr(ht |π) = Pr(ht |Θmin
π ) ·π(Θmin

π )+Pr(ht |supp(π)\Θ
min
π ) · (1−π(Θmin

π ))

= Pr(ht |Θmin
π ) ·

[
π(Θmin

π )+
Pr(ht |supp(π)\Θmin

π )

Pr(ht |Θmin
π )

· (1−π(Θmin
π ))

]
.

Similarly expand Pr(ht |λ ).
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As a result,

Pr(ht |π)
Pr(ht |λ )

=
Pr(ht |Θmin

π ) ·
[
π(Θmin

π )+
Pr(ht |supp(π)\Θmin

π )

Pr(ht |Θmin
π )

· (1−π(Θmin
π ))

]
Pr(ht |Θmin

λ
) ·
[

π(Θmin
λ

)+
Pr(ht |supp(λ )\Θmin

λ
)

Pr(ht |Θmin
λ

)
· (1−π(Θmin

λ
))

]
a.s.−→ Pr(ht |Θmin

π )

Pr(ht |Θmin
λ

)
· π(Θ

min
π )

π(Θmin
λ

)

by successive applications of Lemma B.1 (abusing a.s.−→ notation slightly). The result then follows
from further successive applications of Lemma B.1.

�

Proof of Proposition 1

Proof. Consider a minimal SAS (N ,σ) given π . Toward a contradiction, suppose that π is not
attentionally measurable with respect to (N ,σ). This implies that there exists a sample path ht ,
t ≥ 2 that occurs with positive probability under θ ∗ with the following property: there exists a finite
t̃ ≤ t such that P(nt̃(ht̃)|θ) = 0 for all θ ∈ supp(π), where ht̃ is the history up to time t̃ consistent
with ht . Let τ be the smallest such t̃. Consider a modified noticing strategy N̂ = (N̂1, N̂2, . . .)

derived from N in the following way. First, N̂k = Nk for all k < τ . Second, since Nτ is a finite
partition, enumerate its elements arbitrarily by Nτ = {nτ

1, . . . ,n
τ
J} for some J ≥ 1. By assumption,

there exits some element nτ ∈ Nt such that P(nτ |θ) = 0 ∀θ ∈ supp(π). Since the enumeration of
Nτ is arbitrary, label this element by nτ

J . There must, however, exist some nτ
i ∈ Nτ , i 6= J, such that

P(nτ
i |θ) > 0 for some θ ∈ supp(π). Let N̂τ consist of J− 1 elements, N̂τ = {n̂τ

1, . . . , n̂
τ
J−1}, such

that n̂τ
k = nτ

k if k 6= i,J and n̂τ
i = nτ

i ∪nτ
J . That is, N̂τ is a coarsening of Nτ where the zero probability

cell nτ
J is merged with a positive probability cell, nτ

i . For periods beyond τ , the partitions N̂τ+k are
derived from Nτ+k in order to maintain memory consistency given the coarsening in period τ . The
noticing strategy N̂ is thus coarser than N and the attentional strategy (N̂ ,σ) is also sufficient
given π , since altering how a person behaves in subjectively zero-probability situations does not
impact his expected payoffs. Hence, (N ,σ) is not minimal, a contradiction.

�

Proof of Proposition 2

Proof. The proof is analogous to the proof of Proposition 6. �

Proof of Proposition 3

Proof. We first show that non-doctrinaire priors (i.e., they are given by continuous density func-
tions that are non-zero on interior points (.5,1)) imply that a SAS requires the agent to notice data
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informative about (θ 1,θ 2). To do so, we in fact show that a condition weaker than non-doctrinaire
is sufficient.

Consider a model π with supports over θ 1 and θ 2 that share common minimum and maxi-
mum values, denoted by θ and θ , respectively, and define the sets QA ≡

[
θ

2

(1−θ)2 ,
θ

2

(1−θ)2

]
, QB ≡[

(1−θ)2

θ
2 , (1−θ)2

θ
2

]
, QM ≡

[
θ(1−θ)

θ(1−θ)
, θ(1−θ)

θ(1−θ)

]
, and Q ≡ QA ∪QB ∪QM. We show that if q̄ ≡ (1−

qA)/qA ∈Q, then the agent must update her beliefs over each θ i, i ∈ {1,2}. To see this, note that
the agent must record information about (θ 1,θ 2) whenever there exist (θ 1,θ 2) and (θ̃ 1, θ̃ 2) both
in supp(π) and a signal realization (s1,s2) such that, given (s1,s2), x = A is optimal under (θ 1,θ 2)

and x = B is optimal under (θ̃ 1, θ̃ 2). Additionally, conditional on (s1,s2), the agent takes A under
(θ 1,θ 2) iff Pr(ω = A|s1,s2,θ 1,θ 2)≥ Pr(ω = B|s1,s2,θ 1,θ 2) iff

Pr(s1,s2|ω = A,θ 1,θ 2)

Pr(s1,s2|ω = B,θ 1,θ 2)
≥ q̄. (B.6)

We now derive values of q̄ such that the optimal strategy given (s1,s2) varies across parameters
(θ 1,θ 2) in supp(π). Starting with (s1,s2) = (A,A), the strategy varies in (θ 1,θ 2) if A is optimal
under the parameters most supportive of action A following signal (A,A) and B is optimal under
the parameters least supportive of A. From (B.6), this is equivalent to

q̄ ∈

[
θ

2

(1−θ)2 ,
θ

2

(1−θ)2

]
= QA. (B.7)

Turning to (s1,s2) = (B,B), the optimal strategy given (B,B) varies in (θ 1,θ 2) if

q̄ ∈
[
(1−θ)2

θ
2 ,

(1−θ)2

θ
2

]
= QB. (B.8)

Finally, for a mixed signal (s1,s2)∈ {(A,B),(B,A)}, the optimal strategy given such a signal varies
in (θ 1,θ 2) if

q̄ ∈
[

θ(1−θ)

θ(1−θ)
,
θ(1−θ)

θ(1−θ)

]
= QM. (B.9)

Thus, if q̄ ∈Q = QA∪QB∪QM, then there necessarily exist (θ 1,θ 2) and (θ̃ 1, θ̃ 2) in supp(π) and
signal realization (s1,s2) such that, given (s1,s2), A is optimal under (θ 1,θ 2) and B is optimal
under (θ̃ 1, θ̃ 2). Non-doctrinaire priors imply θ = .5 and θ = 1, which in turn implies Q = [0,∞)

and hence guarantees q̄ ∈Q.
We now consider when π is part of an attentionally stable equilibrium. For notational ease, we

focus on the case where qA = 1/2 (note that qA = 1/2⇒ q̄ ∈Q for any θ ,θ ∈ (.5,1) such that
θ < θ ). The proof for qA 6= 1/2 is similar.
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We first consider the case of automatic recall (Definition B.1). Since a SAS requires the person to
continually update beliefs over θ (shown above), the agent must track whether each i ∈ {1,2} was
correct when rt = ωt and whether the two parties agree when rt = ∅. Thus the various sufficient
statistics mπ((s1,s2,r)) are:

mπ((A,A,A)) = {(A,A,A),(B,B,B)},

mπ((A,B,A)) = {(A,B,A),(B,A,B)},

mπ((B,A,A)) = {(B,A,A),(A,B,B)},

mπ((B,B,A)) = {(B,B,A),(A,A,B)},

mπ((A,B,∅)) = {(A,B,∅),(B,A,∅)},

mπ((A,A,∅)) = {(A,A,∅),(B,B,∅)}.

Under automatic recall, a minimal SAS must distinguish mπ(y) each period. Enumerate the
elements of mπ(·) above by {m1

π , . . . ,m
N
π }. For any yt ∈ Y (π)t , let kn(yt) be the count of outcomes

yτ from yt such that yτ ∈ mn
π . Then for any θ ∈ supp(π),

P(mπ(yt)|θ)
P(mπ(yt)|θ ∗)

=
∏

N
n=1 P(mn

π |θ)kn(yt)

∏
N
n=1 P(mn

π |θ ∗)kn(yt)
=

(
∏

N
n=1 P(mn

π |θ)kn(yt)/t

∏
N
n=1 P(mn

π |θ ∗)kn(yt)/t

)t

. (B.10)

Likelihood ratio (B.10) is identical to the one considered in Lemma B.1 aside from the fact that
we take the “noticed” outcome space in this case to be {m1

π , . . . ,m
N
π } rather than Y (π). As such,

we can immediately invoke Lemma B.1: limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗) > 0 with probability

1 given θ ∗ iff Z̄(θ ,θ ∗|θ ∗) ≥ 1, where Z̄(θ ,θ ∗|θ ∗) ≡ ∏
N
n=1

(
P(mn

π |θ)
P(mn

π |θ∗)

)P(mn
π |θ∗)

. From Remark 1,
Z̄(θ ,θ ∗|θ ∗)≥ 1 iff D(θ ∗‖θ)≤ 0, where D in this case is the KL distance from Pm(·|θ) to Pm(·|θ ∗)
with Pm(·|θ) denoting the implied probability measure over {m1

π , . . . ,m
N
π } given θ . By Gibb’s in-

equality, D(θ ∗‖θ) ≤ 0⇔ Pm(·|θ) = Pm(·|θ ∗). Note, however, that P(mπ(A,A,A)|θ) = θ 1 ·θ 2 =

θ 1((1− ι)θ 1+ ι) and P(mπ(A,A,A)|θ ∗) = (1− ι)θ 1+ ιθ 1 = θ 1. Thus, if θ ∗ involves θ 1 < 1, then
P(mπ(A,A,A)|θ)< P(mπ(A,A,A)|θ ∗) and hence P(mπ (yt)|θ)

P(mπ (yt)|θ∗) converges to 0 a.s. under θ ∗, imply-
ing that π is not θ ∗-attentionally explicable with respect to the minimal SAS that distinguishes
mπ(y) each round.

We now consider volitional recall. To assess attentional explicability, we first derive the minimal
SAS following any history. For any yt ∈ Y (π)t , let f (yt) be the number of rounds with feedback
(i.e., r 6=∅) and let ki(yt) be the number of rounds with feedback in which si, i ∈ {1,2}, is correct.
Let a(yt) be the number of rounds without feedback in which s1 = s2. Now consider two distinct
histories, yt+1 and ỹt+1. Let f = f (yt+1), f̃ = f (ỹt+1), ki = ki(yt+1), k̃i = ki(ỹt+1), j = j(yt+1),
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and j̃ = j(ỹt+1). Then

Pr(ỹt+1|θ)
Pr(yt+1|θ)

=

[( t
f̃

)
ρ f̃ (1−ρ)t− f̃

][( f̃
k̃1

)
(θ 1)k̃1

(1−θ 1) f̃−k̃1
][( f̃

k̃2

)
(θ 2)k̃2

(1−θ 2) f̃−k̃2
]

[( t
f

)
ρ f (1−ρ)t− f

][( f
k1

)
(θ 1)k1

(1−θ 1) f−k1
][( f

k2

)
(θ 2)k2

(1−θ 2) f−k2
]Ψ(ỹt+1,yt+1|θ),

where

Ψ(ỹt+1,yt+1|θ)= Pr( j̃ agreements in t− f̃ |θ)
Pr( j agreements in t− f |θ)

=

(t− f̃
j̃

)
(1−θ 1−θ 2 +2θ 1θ 2) j̃(θ 1 +θ 2−2θ 1θ 2)t− f̃− j̃(t− f

j

)
(1−θ 1−θ 2 +2θ 1θ 2) j(θ 1 +θ 2−2θ 1θ 2)t− f− j

.

Now define C(ỹt+1,yt+1) as the components of Pr(ỹt+1|θ)/Pr(yt+1|θ) that are independent of θ :

C(ỹt+1,yt+1)≡

[( t
f̃

)
ρ f̃ (1−ρ)t− f̃

][( f̃
k̃1

)][( f̃
k̃2

)][(t− f̃
j̃

)][( t
f

)
ρ f (1−ρ)t− f

][( f
k1

)][( f
k2

)][(t− f
j

)] .
Hence,

Pr(ỹt+1|θ)
Pr(yt+1|θ)

=C(ỹt+1,yt+1)
[
(θ 1)k̃1−k1

(1−θ
1)( f̃−k̃1)−( f−k1)

][
(θ 2)k̃2−k2

(1−θ
2)( f̃−k̃2)−( f−k2)

]
×
[
(1−θ

1−θ
2 +2θ

1
θ

2) j̃− j(θ 1 +θ
2−2θ

1
θ

2) f+ j− f̃− j̃
]

(B.11)

Equation B.11 is independent of θ iff each exponent is zero. In turn, this requires k1 = k̃1, f = f̃ ,
and k2 = k̃2, j = j̃. This implies:

mπ(yt+1)=

{
ỹt+1 ∈Y t+1(π) | f (ỹt+1)= f (yt+1), k1(ỹt+1)= k1(yt+1), k2(ỹt+1)= z2(yt+1), j(ỹt+1)= f (yt+1)

}
.

Thus, any SAS must record summary statistics f (yt+1), k1(yt+1), k2(yt+1), and j(yt+1).
Given such a SAS, we now analyze whether π is θ ∗-attentionally explicable; i.e., whether

P(mπ (yt)|θ)
P(mπ (yt)|θ∗) =

P( f ,k1,k2, j|θ)
P( f ,k1,k2, j|θ∗) converges to 0 in t (variables f , ki, and j are implicitly functions of

t, but we suppress reference to t to avoid notational clutter). Note that P( f ,k1,k2, j|θ)
P( f ,k1,k2, j|θ∗) is equal to

( t
f

)
ρ f (1−ρ)1− f ·

( f
k1

)
(θ 1)k1

(1−θ 1) f−k1 ·
( f

k2

)
(θ 2)k2

(1−θ 2) f−k2
Pr( j| f ,θ)( t

f

)
ρ f (1−ρ)1− f ·

( f
k1

)
(θ 1)k1

(1−θ 1) f−k1 ·Pr(k2|k1, f ,θ ∗)Pr( j| f ,θ ∗)

= R1(k1,k2, f ) ·R2( j, f ), (B.12)
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where

R1(k1,k2, f )≡
( f

k2

)
(θ 2)k2

(1−θ 2) f−k2

Pr(k2|k1, f ,θ ∗)
and R2( j, f )≡ Pr( j| f ,θ)

Pr( j| f ,θ ∗)
.

In turn, we derive the limit of R1 and R2 as t→ ∞. Beginning with R1, following t rounds

R1 =

( f
k2

)
(θ 2)k2

(1−θ 2) f−k2

Pr(k2|k1, f ,θ ∗)
=

( f
k2

)
(θ 2)k2

(1−θ 2) f−k2( f−k1

k2−k1

)
(ι)k2−k1

(1− ι) f−k2
= Za

t ·Zb
t , (B.13)

where Za
t =

( f
k2

)
/
( f−k1

k2−k1

)
and Zb

t = (θ 2)k2
(1−θ 2) f−k2

(ι)k2−k1
(1−ι) f−k2 . First note that as t → ∞, ki/t → ρθ i and

f/t → ρ . We will make use of the fact that
√

2πt
( t

e

)t
/t!→ 1 as t → ∞. As such, the fraction

Za
t = f !

( f−k1)!
(k2−k1)!

k2! can be written as

Za
t =Wt ·

√
2π f

(
f
e

) f

√
2π( f − k1)

(
f−k1

e

) f−k1

√
2π(k2− k1)

(
k2−k1

e

)k2−k1

√
2πk2

(
k2

e

)k2 (B.14)

where

Wt ≡
f !

( f − k1)!
(k2− k1)!

k2!


√

2π f
(

f
e

) f

√
2π( f − k1)

(
f−k1

e

) f−k1

√
2π(k2− k1)

(
k2−k1

e

)k2−k1

√
2πk2

(
k2

e

)k2


−1

(B.15)

is such that Wt → 1 given the fact above. Thus, we can write (B.14) as Za
t =Wt ·Gt · (Ht)

t , where

Gt =

√√√√√ f
t

(
k2−k1

t

)
(

f−k1

t

)
k2

t

(B.16)

with Gt →
√

θ 2−θ 1

(1−θ 1)θ 2 and

Ht =

(
f
t

)( f
t

)(
k2−k1

t

)( k2−k1
t

)
(

f−k1

t

)( f−k1
t

)(
k2

t

)( k2
t

) (B.17)

with

Ht → H̄ ≡

(
(θ 2−θ 1)(θ

2−θ 1)

(1−θ 1)(1−θ 1)(θ 2)θ 2

)ρ

. (B.18)
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Similarly,

Zb
t =

(θ 2)k2
(1−θ 2) f−k2

(ι)k2−k1
(1− ι) f−k2 = (It)t , (B.19)

where

It =
(θ 2)

k2
t (1−θ 2)

f−k2
t

(ι)
k2−k1

t (1− ι)
f−k2

t

(B.20)

with

It → Ī =

(
(θ 2)θ 2

(1−θ 2)1−θ 2

(ι)θ 2−θ 1
(1− ι)1−θ 2

)ρ

. (B.21)

Thus R1 =Wt ·Gt · (Ht · It)t , where

lim
t→∞

Ht · It = (H̄ · Ī)ρ =

(
(θ 2−θ 1)θ 2−θ 1

(1−θ 1)1−θ 1
(θ 2)θ 2

(θ 2)θ 2
(1−θ 2)1−θ 2

(ι)θ 2−θ 1
(1− ι)1−θ 2

)ρ

= 1, (B.22)

which follows from the fact that θ 2− θ 1 = ι(1− θ 1) and 1− θ 2 = (1− ι)(1− θ 1). Hence, an
argument analogous to Lemma B.1 implies that limt→∞(Ht · It)t is positive and finite. Finally,
because limt→∞Wt ·Gt is positive and finite, limt→∞ R1 must be as well.

Since R1 converges to a positive finite value, the limiting behavior of P(mπ (yt)|θ)
P(mπ (yt)|θ∗) is determined

by limt→∞ R2. Note that under θ , the probability of s1 = s2 in any given period is θ 1θ 2 +(1−
θ 1)(1−θ 2) = 1+2θ 1θ 2−θ 1−θ 2. Under θ ∗, this probability is (1− ι)+ ιθ 1 = 1− ι(1−θ 1).
Thus, following t rounds,

R2 =
Pr( j| f ,θ)
Pr( j| f ,θ ∗)

=

(t− f
j

)
(1−θ 1−θ 2 +2θ 1θ 2) j(θ 1 +θ 2−2θ 1θ 2)t− f− j(t− f

j

)
(1− ι(1−θ 1)) j(ι(1−θ 1))t− f− j

. (B.23)

As t→ ∞, j/t→ (1−ρ)(1− ι(1−θ 1)). Hence, we can write R2 = (Zt)
t where

Zt =
(1−θ 1−θ 2 +2θ 1θ 2) j/t(θ 1 +θ 2−2θ 1θ 2)(t− f− j)/t

(1− ι(1−θ 1)) j/t(ι(1−θ 1))(t− f− j)/t
(B.24)

with

lim
t→∞

Zt ≡ Z̄ =

(1− (1−θ 1)(ι +(2− ι)θ 1)

1− (1−θ 1)ι

)1−(1−θ 1)ι(
ι +(2− ι)θ 1

ι

)(1−θ 1)ι
(1−ρ)

. (B.25)

First consider the case of ρ = 1. In this case, Z̄ = 1 and thus (by arguments analogous to Lemma
B.1), R2 = (Zt)

t is strictly positive and finite as t→∞. Hence, there exists θ ∈ π such that the like-
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lihood ratio P(mπ (yt)|θ)
P(mπ (yt)|θ∗) remains positive as t→ ∞, implying that π is θ ∗-attentionally explicable.

Now consider ρ < 1. Let q = 1− (1−θ 1)(ι +(2− ι)θ 1) and q = 1− (1−θ 1)ι . Then Z̄ < 1
(and hence R2 tends to zero) iff(

q
p

)p(1−q
1− p

)1−p

< 1⇔ p log
(

p
q

)
+(1− p) log

(
1− p
1−q

)
> 0. (B.26)

Since p log
(

p
q

)
+(1− p) log

(
1−p
1−q

)
is the KL divergence from distribution (q,1−q) to distribution

(p,1− p), Gibb’s inequality implies that this value is strictly positive iff p 6= q. Since p 6= q for
all θ 1 and ι , condition (B.26) holds, meaning that π is not θ ∗-attentionally explicable whenever
ρ < 1.

�

Proof of Lemma 1

Proof. Suppose that with probability 1 under θ ∗ there exists some t̃ such that for all t > t̃ the
optimal action given πt is independent of θ ∈ supp(πt). Then there exists a SAS (N ,σ) given
π under which: with probability 1 there exists some period of time t̃ after which (i) the noticed
history nt(ht) discards all information from t̃ on except possibly aspects of the current signal st ,
and (ii) the noticing strategy N lumps together any signal that is impossible under πt with a signal
that is possible under πt . Under such a SAS, Pr(nt |π)/Pr(nt |λ ) is bounded away from 0 because
the effective history length is essentially bounded at t̃. Hence, an attentionally stable equilibrium
given θ ∗ exists.

If, in addition, there exists a t̃ ′ ≥ t̃ such that the optimal action given πt is independent of st ∈ St

for all t > t̃ ′, then there exists a SAS satisfying automatic recall where the person ignores all
information after t̃ ′. Under this SAS, Pr(nt |π)/Pr(nt |λ ) is positive and constant in t beyond t̃ ′.
Hence, an attentionally stable equilibrium given θ ∗ satisfying automatic recall exists.

�

Proof of Proposition 4

Proof. Suppose θ ∗ /∈ supp(π) and consider a stationary and binary action space X = {0,1}. Be-
cause θ ∗ /∈ supp(π), P(·|θ) 6= P(·|θ ∗) for all θ ∈ supp(π). Let yt+1 = (y1, . . . ,yt) ∈×t

k=1Yk denote
the sequence of realized outcomes through period t. For each t ∈ N, consider a history-dependent
utility function ut defined as follows:
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ut(xt ,yt ;ht) =


maxθ∈supp(π) P(yt+1|θ)
max

θ̃∈supp(π∗) P(yt+1|θ̃) if ∑
t
k=1 xk = 0

max
θ̃∈supp(π∗) P(yt+1|θ̃)

maxθ∈supp(π) P(yt+1|θ) if ∑
t
k=1 xk = t

−1 if ∑
t
k=1 xk /∈ {0, t}.

(B.27)

If θ ∗ /∈ π , then according to model π , it is optimal to choose xt = 0 for all t, and strictly so
whenever supp(π) is not a subset of supp(π∗). As such, there exists a minimal SAS in which the
person chooses xt = 0 for all t and ignores all feedback. This SAS yields an attentionally stable
equilibrium given π (by Lemma 1), and it is costly given that, under π∗, it is in fact optimal to
choose xt = 1 for all t.

�

Proof of Proposition 5

Proof. Consider a model π and an outcome environment (×∞
t=1Yt ,Θ,P,π∗) in which π is inexpli-

cable in this environment. Suppose π∗ is absolutely continuous with respect to π but θ ∗ /∈ supp(π).
Consider the choice environment where for all t = 1,2, . . . , we have Xt = Ht and u(xt |ht) = 1 if
xt = ht and u(xt |ht) =−1 otherwise. That is, the agent has incentive to repeat back the full history.

Consider an arbitrary minimal SAS (N ,σ). We first show that absolute continuity in this
choice environment implies that the sufficient noticing strategy N = (N1,N2, . . .) must distin-
guish all histories that arise with positive probability under θ ∗ since any such histories happen
with positive probability under π as well. That is, for all t, if ht and h̃t 6= ht happen with positive
probability under θ ∗ (and hence under π), then h̃t /∈ nt(ht). Formally, consider any period t and
ht , h̃t ∈ Ht such that ht 6= h̃t , P(ht |θ ∗) > 0, and P(h̃t |θ ∗) > 0. Toward a contradiction, suppose
h̃t ∈ nt(ht). Recall from Definition 5 that for all ht ∈ Ht that occur with positive probability un-
der (π,σ), sufficiency requires maxx∈Xt E(π,σ)[ut(x|ht)|nt(ht)] = maxx∈Xt E(π,σ)[ut(x|ht)|ht ]. Note
that this condition fails if both h̃t and ht are assigned positive probability under π: in this case,
maxx∈Xt E(π,σ)[ut(x|ht)|nt(ht)] < maxx∈Xt E(π,σ)[ut(x|ht)|ht ]. Thus, no cell of any Nt can contain
more than one history assigned positive probability under π . However, absolutely continuity im-
plies that for all t and any history ht ∈ Ht that can occur under θ ∗, there exists θ ∈ supp(π) such
that ht has positive probability under θ . Hence, P(ht |π)> 0 and P(h̃t |π)> 0, and thus h̃t ∈ nt(ht)

would imply a contradiction to our sufficiency assumption.
Since the minimal SAS (N ,σ) must precisely distinguish the true history ht each round (i.e.,

for all ht , h̃t with positive probability under π , h̃t /∈ nt(ht)), the behavioral strategy σt : Nt → Xt is
such that xt = ht with probability 1. Hence, the person acts optimally each period and the SAS
(N ,σ) is thus costless.

Finally, we can show that π is attentionally inexplicable given the arbitrary minimal SAS (N ,σ).
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For all θ ∈ π , P(nt(ht)|θ) = ∑h̃t∈nt(ht)P(h̃t |θ) = P(ht |θ), since sufficiency of (N ,σ) implies that
for any θ ∈ supp(π), h̃t ∈ nt(ht) where h̃t 6= ht only if h̃t is assigned probability zero under θ . Thus
the relevant Bayes’ Factor for assessing attentional explicability is equivalent to the one for as-
sessing full-attention explicability: for all ht ∈ Ht , P(nt(ht)|θ)/P(nt(ht)|θ ∗) = P(ht |θ)/P(ht |θ ∗).
Since π is inexplicable with full attention, P(ht |θ)/P(ht |θ ∗) converges to zero in t with positive
probability, and hence P(nt(ht)|θ)/P(nt(ht)|θ ∗) does as well. Thus, π is θ ∗-attentionally inexpli-
cable under any arbitrary minimal SAS.

�

Proof of Lemma 2

Proof. Part 1: We first prove a variant of the claim under automatic recall (AR) (Definition B.1):
Further suppose S is a singleton and P(y|θ) ∈ (0,1) ∀ (y,θ) ∈ Y (π)× supp(π). Then the theory π

is PIAE (with AR) given θ ∗ if and only if there exists θ ∈ supp(π) such that

P(mπ(y)|θ)≥ P(mπ(y)|θ ∗) ∀ y ∈ Y (π). (B.28)

(⇐) For any (X ,u), the person believes it is sufficient to record mπ(yt) each period since this
is sufficient for updating beliefs about θ (given S is a singleton). There are two cases to consider
depending on whether the support of outcomes under the misspecified model, Y (π), matches the
true support of outcomes, Y (θ ∗):

1. Suppose Y (π) = Y (θ ∗). This implies straightforwardly that condition (B.28) holds only if
it holds with equality: P(mπ(y)|θ) = P(mπ(y)|θ ∗) ∀y ∈ Y (π). Under this condition, such a
noticing strategy (i.e., recording mπ(yt) each period) is part of an attentionally stable equilib-
rium. To see this, consider any history of outcomes yt ∈ Y (π)t−1 and corresponding noticed
history nt = (mπ(yt−1), . . . ,mπ(y1)). The model π is θ ∗-attentionally explicable if for some
θ ∈ supp(π), limt→∞ P(nt |θ)/P(nt |θ ∗)> 0 with probability 1 given θ ∗. Since Y (π) is finite,
enumerate the elements of mπ(·) by {m1

π , . . . ,m
N
π }. For any yt ∈ Y (π)t−1, let kn(yt) be the

count of outcomes yτ in yt such that yτ ∈ mn
π . Then for any θ ∈ supp(π),

P(nt(yt)|θ)
P(nt(yt)|θ ∗)

=
∏

N
n=1 P(mn

π |θ)kn(yt)

∏
N
n=1 P(mn

π |θ ∗)kn(yt)
=

(
∏

N
n=1 P(mn

π |θ)kn(yt)/t

∏
N
n=1 P(mn

π |θ ∗)kn(yt)/t

)t

. (B.29)

This likelihood ratio is identical to the one considered in Lemma B.1 except the “noticed”
outcome space in this case to be {m1

π , . . . ,m
N
π } rather than Y (π). Hence (as described in the

proof of Proposition 3), Lemma B.1 and Remark 1 imply limt→∞ P(nt |θ)/P(nt |θ ∗)> 0 with
probability 1 given θ ∗ iff D(θ ∗‖θ)≤ 0, where D in this case is the KL distance from Pm(·|θ)
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to Pm(·|θ ∗) with Pm(·|θ) denoting the implied probability measure over {m1
π , . . . ,m

N
π } given

θ . By Gibb’s inequality, D(θ ∗‖θ)≤ 0⇔Pm(·|θ)=Pm(·|θ ∗). Thus, there exists θ ∈ supp(π)
such that limt→∞ P(nt |θ)/P(nt |θ ∗) > 0 with probability 1 given θ ∗, implying that π is part
of an attentionally stable equilibrium irrespective of (X ,u).

2. Suppose Y (π) 6= Y (θ ∗). As such, condition (B.28) need not hold with equality. The case
of equality is handled above. To handle the case without equality, suppose there exists
θ ∈ supp(π) such that P(mπ(y)|θ)≥ P(mπ(y)|θ ∗) ∀y ∈Y (π) with strict inequality for some
ỹ ∈ Y (π). As such, the support Y (π) must exclude at least one outcome in Y (θ ∗), so the
set of outcomes in Y (θ ∗) but outside Y (π), defined as Y 0 ≡ [Y (θ ∗)∪Y (π)] \Y (π), is non-
empty. Let P0 ≡ ∑y∈Y 0 P(y|θ ∗). Again enumerate the elements of mπ(·) as {m1

π , . . . ,m
N
π }.

We will construct an alternative collection of sufficient statistics over Y (π)∪Y 0 for each time
period t, denoted

{
m̃(1,t)

π , . . . , m̃(N,t)
π

}
such that P

(
m̃(n,t)

π

∣∣θ) = P
(

m̃(n,t)
π

∣∣θ ∗) ∀n = 1, . . . ,N

and ∀t ∈ N. Suppose the person merges y ∈ Y 0 with elements of a partition over Y (π) ac-
cording to a randomizing device governed by discrete i.i.d. random variables zt with support
Z = {1, . . . ,N} and mass function Pr(zt = n) = [P(mn

π |θ)−P(mn
π |θ ∗)]/P0. We augment

the observation space to Y ×Z . Then for all t and all outcomes (yt ,zt), define m̃(n,t)
π by

yt ∈ m̃(n,t)⇔
(
yt ∈ mn

π

)
or
(
yt /∈ Y (π) and zt = n

)
.

In other words, yt is lumped according to mπ if yt ∈ Y (π) and is otherwise lumped stochas-
tically according to the randomizing device zt . Thus, each m̃(n,t)

π is encoded with the same
probability under both θ and θ ∗: from the specification of Pr(zt = n), it follows that for
all n ∈ {1, . . . ,N} and all t ∈ N, P

(
m̃(n,t)

π

∣∣θ ∗) = P(mn
π |θ ∗)+P0 ·Pr(zt = n) = P(mn

π |θ) =

P
(

m̃(n,t)
π

∣∣θ), where the last equality follows from the fact that the only realizations of yt

included in m̃(n,t)
π beyond those in mn

π have probability zero under θ . Given that the distribu-
tion of noticed outcomes under m̃π(·) is equivalent for both θ and θ ∗, the proof concludes
along the same lines as the case above with Y (π) = Y (θ ∗) aside from the simple difference
that the mn

π ’s above are replaced with the m̃(n,t)
π ’s.

(⇒) Suppose π is PIAE (with AR) given θ ∗. Enumerate Y (π) = {y1, . . . ,yN} and consider
the action space X = [0,1]N along with utility function u(x,y) = −∑

N
n=1(xn− 1(y = yn))

2. We
first show that under (X ,u), any SAS requires that the person notices at least the information
contained in mπ(yt) each period since this is a minimal sufficient statistic (see, for example,
Lehmann and Casella 1998). To establish this, we show that the person’s optimal action after
noticing y ∈ mπ differs from the optimal action following any y′ ∈ m′π where m′π 6= mπ . The op-
timal action under (X ,u) is xn = ∑θ∈supp(π)P(yn|θ)πt(θ). First, if mπ(y) = Y (π) ∀y, then we are
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trivially done. If there exists y ∈Y (π) such that mπ(y) 6=Y (π), then it suffices to show the follow-
ing: y′ /∈ mπ(y)⇒ ∑θ∈supp(π)P(y|θ)π(θ |y) 6= ∑θ∈supp(π)P(y|θ)π(θ |y′), where π(θ |y) is the pos-
terior probability of θ following outcome y given prior π(θ). Note that ∑θ∈supp(π)P(y|θ)π(θ |y) 6=
∑θ∈supp(π)P(y|θ)π(θ |y′)⇔ ∑θ∈supp(π)P(y|θ)[π(θ |y)−π(θ |y′)] 6= 0. Further,

∑
θ∈supp(π)

P(y|θ)[π(θ |y)−π(θ |y′)] = ∑
θ∈supp(π)

P(y|θ)
[

P(y|θ)π(θ)
P(y)

− P(y′|θ)π(θ)
P(y′)

]
∝ ∑

θ∈supp(π)
π(θ)P(y|θ)

[
P(y|θ)P(y′)−P(y′|θ)P(y)

]
= ∑

θ∈supp(π)
π(θ)

[
P(y|θ)2P(y′)−P(y|θ)P(y′|θ)P(y)

]
= Eθ

[
P(y|θ)2P(y′)−P(y|θ)P(y′|θ)P(y)

]
> Eθ

[
P(y)2P(y′)−P(y′|θ)P(y)2]= 0,

where the inequality follows from Jensen’s inequality. Thus, any π that is PIAE (with AR) must
be part of an ASE involving a SAS that records mπ(yt) each round.

To finally establish that condition (B.28) must hold, we proceed by contradiction: suppose con-
dition (B.28) does not hold, so for any θ ∈ supp(π), there exists y ∈Y (π) such that P(mπ(y)|θ)<
P(mπ(y)|θ ∗). Under a SAS where the person records each instance of mπ(y), the predicted distri-
bution over noticed outcomes for each t and θ ∈ supp(π) will differ from the true distribution in the
limit. As such, the KL distance between these distributions is positive and Pr(nt |θ)/Pr(nt |θ ∗) a.s.−→
0 by Remark 1. Thus π is not PIAE (with AR), a contradiction.

Part 2: We now prove the claim without automatic recall.
(⇐) For any (X ,u), the person believes it is sufficient to notice mπ(yt) each period since this

is sufficient for updating beliefs about θ (given S is a singleton). Hence, for any (X ,u), noticing
mπ(yt) constitutes the noticing strategy for some SAS. By assumption, there exists θ ∈ supp(π)
such that limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗) > 0 with probability 1 under θ ∗. Thus, under the
noticing strategy described above, limt→∞ P(nt |θ)/P(nt |θ ∗)= limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗)>
0 (with probability 1 under θ ∗), which implies that π is part of an attentionally stable equilibrium
given θ ∗. Finally, since (X ,u) was arbitrary, π is PIAE given θ ∗.

(⇒) Suppose π is PIAE given θ ∗. The proof follows along the same lines as the analogous re-
sult assuming automatic recall, above. First, we show that there exist (X ,u) under which any SAS
requires the person to notice mπ(yt) for all t. As above, consider X = [0,1]N along with utility func-
tion u(x,y) =−∑

N
n=1(xn−1(y = yn))

2. Analogous to the proof with automatic recall, the person’s
optimal action after noticing ỹt ∈mπ(yt) differs from the optimal action following any ỹt /∈mπ(yt)

and hence the person must distinguish any mπ(yt) from mπ(ỹt) 6= mπ(yt). Given this result, PIAE
by definition implies that there exists θ ∈ supp(π) and a SAS such that limt→∞ P(nt |θ)/P(nt |θ ∗)>
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0 with probability 1 under θ ∗, which in turn implies limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗) > 0 with
probability 1 under θ ∗ since nt must contain at least as much information as mπ(yt).

�

Proof of Proposition 6

Proof. The proof is organized as follows: we first describe sufficient statistics for ht based on the
perceived support of (vA,vB). We then show that in scenarios where the person deems it necessary
to attend to outcomes, π is attentionally inexplicable whenever (v∗A,v

∗
B) /∈ supp(π). Finally, we

apply these results to each case considered in the proposition.
For any noticing strategy N , the person chooses A in round t⇔αE[yA

t −yB
t |nt(ht),π]> cA−cB.

For N to be sufficient, we require that for all t, αE[yA
t − yB

t |nt(ht),π] > cA − cB ⇔ αE[yA
t −

yB
t |ht ,π] > cA− cB—that is, the person predicts that his behavior would be identical regardless of

whether he notices ht or nt(ht).
Since E[yA

t − yB
t |ht ,π] ∈ [vA− vB,vA− vB], the person finds it useless to attend to ht whenever

they are initially certain about the optimal action. This corresponds to either:

α(vA− vB)> cA− cB (B.30)

or
α(vA− vB)< cA− cB, (B.31)

and we assume that vA−vB 6= cA−cB and vA−vB 6= cA−cB in order to rule out non-generic cases
of indifference. When either (B.30) or (B.31) hold, the minimal SAS is such that for all t ≥ 1, Nt

does not distinguish any ht . Under this minimal SAS, π is trivially attentionally explicable.
We now describe the minimal SAS when neither (B.30) nor (B.31) hold—i.e., when the person

is not initially certain of the optimal action. Note that E[yx
t |ht ,π] = ∑v∈supp(πx)Pr(v|ht)vx. For all t,

let sx(ht)≡ ∑
t−1
k=1 1{yx

k = 1}, so

Pr(vx|ht) =

( t−1
sx(ht)

)
vsx(ht)

x (1− vx)
t−1−sx(ht)

∑ṽx∈supp(πx)

( t−1
sx(ht)

)
ṽsx(ht)

x (1− ṽx)t−1−sx(ht)
=

vsx(ht)
x (1− vx)

t−1−sx(ht)

∑ṽx∈supp(πx) ṽsx(ht)
x (1− ṽx)t−1−sx(ht)

.

(B.32)
Thus, if the person deems updating useful in round t (i.e., under π there exist distinct histories that
would lead to different optimal actions), then tracking sx(t) for each x ∈ {A,B} is sufficient for ht .

Furthermore, if neither (B.30) nor (B.31) hold, then a minimal SAS must track each sx(ht) for all
t. To see this, note that α(vA− vB)> cA− cB and α(vA− vB)< cA− cB implies the existence of a
value c̄∈ (vA−vB,vA−vB) such that αE[yA

t −yB
t |ht ,π]> cA−cB ⇐⇒ E[yA

t −yB
t |ht ,π]> c̄. For any

ht such that E[yA
t −yB

t |ht ,π]> c̄, there exists a continuation history ht +k with positive probability

60



under π such that E[yA
t − yB

t |ht+k,π] < c̄. For instance, consider a continuation where yA
t+ j = 0

and yB
t = 1 for all j = 1, . . . ,k for a sufficiently large finite value k. (A similar logic implies that if

E[yA
t −yB

t |ht ,π]< c̄, there is positive probability that E[yA
t −yB

t |ht+k,π]> c̄ for sufficiently large k.)
As such, there is no finite time at which the agent can stop attending to outcomes from that point
on, and therefore a minimal SAS is comprised of noticing partitions Nt with cells characterized by

nt(ht) = {h̃t |sx(h̃t) = sx(ht) ∀x ∈ X}. (B.33)

Finally, if Nt is given by (B.33) for all t, then (following the proof of Proposition A.3) π is atten-
tionally explicable iff P(·|(vA,vB)) = P(·|(v∗A,v∗B)) for some (vA,vB)∈ supp(π) where P(·|(vA,vB))

is the probability distribution over (yA
t ,y

B
t ). Note that P(·|(vA,vB)) = P(·|(v∗A,v∗B)) iff vx = v∗x for

each x = A,B, and therefore π is attentionally explicable given a SAS that tracks each sx(ht) iff
(v∗A,v

∗
B) ∈ supp(π).

To complete the proof, we assess under which conditions both (B.30) and (B.31) fail to hold. As
shown above, it is under these conditions (and only these conditions) that there is no ASE under
the minimal SAS when (v∗A,v

∗
B) /∈ supp(π).

Part 1. Suppose that neither option is perceived to dominate the other. This implies that vA−
vB < 0 and vA− vB > 0.

Case a: If α ≤ α , then α(vA−vB)≤ α(vA−vB) = cA−cB, which implies that Condition (B.31)
holds and therefore π is attentionally explicable under the minimal SAS.

Case b: If α > α , then α(vA−vB)> α(vA−vB) = cA−cB, which implies that Condition (B.31)
fails to hold. Furthermore, vA− vB < 0 implies that Condition (B.30) fails. Therefore there is no
ASE under the minimal SAS when (v∗A,v

∗
B) /∈ supp(π).

Part 2. Suppose A is perceived to dominate B. Thus, vA− vB > 0.
Case a: If α ≤ α , then α(vA−vB)≤ α(vA−vB) = cA−cB, which implies that Condition (B.31)

holds and therefore π is attentionally explicable under the minimal SAS.
Case b: If α > α , then α(vA−vB)> α(vA−vB) = cA−cB, which implies that Condition (B.31)

fails to hold. Furthermore, if α ≤ α , then α(vA− vB) ≤ α(vA− vB) = cA− cB, which implies
that Condition (B.30) fails to hold. Therefore π is attentionally explicable under the minimal SAS
when (v∗A,v

∗
B) /∈ supp(π).

Case c: If α > α , then α(vA−vB)> α(vA−vB) = cA−cB, which implies that Condition (B.30)
holds and therefore π is attentionally explicable under the minimal SAS.

Part 3. Suppose B is perceived to dominate A. This implies that vA− vB < 0. Thus, Condition
(B.31) holds and π is attentionally explicable under the minimal SAS.

�

Proof of Proposition 7
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Proof. Let φ = (N ,σ) be an attentionally stable equilibrium given π in the original environment.
In the original environment, the history each period looks like

ht = (st ,yt−1,xt−1,yt−2,xt−2, . . . ,y1,x1).

In the modified environment, the history each period instead looks like

h̃t = (s̃t ,yt−1,xt−1,yt−2,xt−2, . . . ,y1,x1)

= (ht ,yt−1,xt−1,yt−2,xt−2, . . . ,y1,x1).

Let h̃t
1 be the first component of h̃t , which (for illustration) above is ht . Now, let ˜N be defined

by

ñt(h̃t) =
{

ĥt ∈ H̃t |ĥt
1 ∈ nt(h̃t

1)
}
∀ t, h̃t ∈ H̃t .

So the person notices the same things under ˜N that she does under N . Now derive σ̃ from σ in
the obvious way and let φ̃ = ( ˜N , σ̃).

Note that φ̃ leads to the same behavior, beliefs, and effective information sets as φ . Since φ is a
SAS, so is φ̃ . And since φ is an ASE given π in the original environment, φ̃ is an ASE given π in
the modified environment.

�

Proof of Proposition 8

Proof. Let N FA be the noticing strategy where a person notices everything (i.e., each ntFA is
a singleton) and σFA be a pure behavioral strategy such that φ FA = (N FA,σFA) is a SAS. (FA is
shorthand here for “full attention”.) For each ht , let x(ht) equal the x that σFA(ht) places probability
1 on. To simplify the presentation, suppose that for every t and x̃ ∈ Xt there exists an ht that occurs
with positive probability according to π under which x(ht) = x̃.

For each t and x ∈ Xt , let

nt
x̃ =

{
ht ∈ Ht |x(ht) = x̃

}
and define N by

nt(ht) = nt
x(ht) ∀ t,ht .

Under N , the person comes up with a recommendation for herself of what action to take and
notices only this recommendation.
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It is clear that it is a best response for the person to follow the noticed recommendation and he
cannot do better by noticing any more than the recommendation. That is, φ = (N ,σ) is a SAS
where σ(nt

x) always places probability 1 on x.
�

Proof of Proposition A.1

Proof. Suppose π is censored. Thus there exists θ ∈ supp(π) such that P(mπ(y)|θ)=P(mπ(y)|y∈
Y (θ),θ ∗) for all y ∈ Y (θ). Since Y (θ) ⊂ Y (θ ∗), it must be that P(mπ(y)|θ ∗) ≤ P(mπ(y)|y ∈
Y (θ),θ ∗) = P(mπ(y)|θ) for all y ∈ Y (θ), which implies that the sufficient condition for PIAE
(with AR) from the proof of Lemma 2 holds (Condition B.28). If π is PIAE with AR, then it is
PIAE more generally. �

Proof of Proposition A.2

Proof. Assume π exhibits predictor neglect and that P(r|s1, . . . ,sJ,θ) = P(r|s1, . . . ,sJ,θ ∗) for
all possible (r,s1, . . . ,sJ) under π . Any SAS must distinguish the y = (r,s1, . . . ,sK) from ỹ =

(r̃, s̃1, . . . , s̃K) only if (r,s1, . . . ,sJ) 6= (r̃, s̃1, . . . , s̃J). Let N be the number of distinct values of
(r,s1, . . . ,sJ) under π . Then for each n = 1, . . . ,N, mπ(yt) must record the count kn(yt) of out-
comes yτ , τ < t, such that yτ ∈ mn

π . Then P(mπ (yt)|θ)
P(mπ (yt)|θ∗) is identical to (B.35) from the proof of

Corollary A.4. As such, π is PIAE if P(mn
π |θ ∗) = P(mn

π |θ) for all n = 1, . . . ,N. The fact that
P(r|s1, . . . ,sJ,θ) = P(r|s1, . . . ,sJ,θ ∗) for all possible (r,s1, . . . ,sJ) under π along with the defini-
tion of mπ implies P(mn

π |θ ∗) = P(mn
π |θ) for all n = 1, . . . ,N, so π is PIAE. �

Proof of Proposition A.3

Proof. Suppose {P(·|θ)}θ∈supp(π)∪θ∗ satisfies VLRP. Thus, for each y ∈ Y (π), there exists no
y′ ∈Y (π) such that y′ 6= y and P(y|θ)

P(y′|θ) is constant in θ ∈ supp(π). This implies that for all y ∈Y (π),
mπ(y) = {y}. Accordingly, for any yt ∈ Y (π)t−1 and all yn ∈ Y (π), mπ(yt) must record the count
of outcomes yτ in yt such that yτ = yn (denoted by kn(yt)). Then

P(mπ(yt)|θ)
P(mπ(yt)|θ ∗)

=
∏

N
n=1 P(yn|θ)kn(yt)

∏
N
n=1 P(yn|θ ∗)kn(yt)

=

(
∏

N
n=1 P(yn|θ)kn(yt)/t

∏
N
n=1 P(yn|θ ∗)kn(yt)/t

)t

. (B.34)

Hence, Lemma B.1 along with (B.34) implies that limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗) > 0 with
probability 1 given θ ∗ iff −D(θ ∗‖θ)≥ 0. Since the Kullback-Leibler Divergence is non-negative,
−D(θ ∗‖θ) ≥ 0⇔ D(θ ∗‖θ) = 0⇔ P(·|θ) = P(·|θ ∗), which contradicts VLRP. Hence, π is not
PIAE.

�
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Proof of Proposition A.4

Proof. Let mπ be the partition of Y (π) defined in (3). Since this partition is unique and finite,
enumerate its elements as {m1

π , . . . ,m
N
π }. For any yt ∈ Y (π)t−1, mπ(yt) must record the count of

outcomes yτ in yt such that yτ ∈ mn
π (denoted by kn(yt)). Then

P(mπ(yt)|θ)
P(mπ(yt)|θ ∗)

=
∏

N
n=1 P(mn

π |θ)kn(yt)

∏
N
n=1 P(mn

π |θ ∗)kn(yt)
=

(
∏

N
n=1 P(mn

π |θ)kn(yt)/t

∏
N
n=1 P(mn

π |θ ∗)kn(yt)/t

)t

. (B.35)

Likelihood ratio (B.35) is identical to the one considered in in Part 1 of Lemma 2 (Equation B.29).
Thus limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗)> 0 with probability 1 given θ ∗ iff D(θ ∗‖θ) = 0, where
D in this case is the KL distance from Pm(·|θ) to Pm(·|θ ∗) with Pm(·|θ) denoting the implied
probability measure over {m1

π , . . . ,m
N
π } given θ . Since π is overly elaborate, there exists some

mn
π such that mn

π ∩Y (θ ∗) = ∅, implying Pm(mn
π |θ) > 0 while Pm(mn

π |θ ∗) = 0. Finally, since
D(θ ∗‖θ) = 0⇔ Pm(·|θ) = Pm(·|θ ∗), ratio (B.35) converges to 0 a.s. and π is therefore not PIAE.

�

Proof of Proposition A.5

Proof. Following the setup of the proof of Proposition A.4, let mπ be the partition of Y (π) de-
fined in (3) and enumerate its elements as {m1

π , . . . ,m
N
π }. Again following the proof of Proposition

A.4, any yt ∈ Y (π)t−1, mπ(yt) must record the count of outcomes yτ in yt such that yτ ∈ mn
π (de-

noted by kn(yt)), and thus limt→∞ P(mπ(yt)|θ)/P(mπ(yt)|θ ∗) (which in this case is identical to
the likelihood ratio in Equation B.35) is positive with probability 1 given θ ∗ iff D(θ ∗‖θ) = 0,
where D in this case is the KL distance from Pm(·|θ) to Pm(·|θ ∗). Note that D(θ ∗‖θ) = 0 iff
Pm(·|θ) = Pm(·|θ ∗). We now show that the previous equality is violated for any θ ∈ supp(π)
when π is over-fit: Since π is over-fit, there exists s, s̃ ∈ S such that (s1, . . . ,sJ) = (s̃1, . . . , s̃J),
(sJ+1, . . . ,sK) 6= (s̃J+1, . . . , s̃K), and (r, s̃) /∈ mπ((r,s)) for some resolution r where (r,s),(r, s̃) ∈
Y (π). For all θ ∈ supp(π), P(r|s,θ) 6= P(r|s̃,θ), but P(r|s,θ ∗) = P(r|s̃,θ ∗). This implies that,
for each θ ∈ supp(π), one of the following inequalities must hold: P(r|s,θ) 6= P(r|s,θ ∗) or
P(r|s̃,θ) 6= P(r|s̃,θ ∗). Consider an arbitrary θ ∈ supp(π), and suppose WLOG that the first or the
two previous inequalities holds: P(r|s,θ) 6= P(r|s,θ ∗). Since P(s) is independent of the parame-
ter (by assumption), the previous inequality implies that P((r,s)|θ) 6= P((r,s)|θ ∗), and therefore
Pm(mπ((r,s))|θ) 6= Pm(mπ((r,s))|θ ∗).

�
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